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How To Be Successful In This Course 

This is not a high school math course, although for some of you the content may seem 
familiar. There are key differences to what you will learn here, how quickly you will be 
required to learn it and how much work will be required of you. 

You will no longer be shown a technique and be asked to mimic it repetitively as the only 
way to prove learning.  Not only will you be required to master the technique, but you 
will also be required to extend that knowledge to new situations and build bridges 
between the material at hand and the next topic, making the course highly cumulative. 

As a rule of thumb, for each hour you spend in class, you should expect this course will 
require an average of 2 hours of out-of-class focused study. This means that some of you 
with a stronger background in mathematics may take less, but if you have a weaker 
background or any math anxiety it will take you more.   

Notice how this is the equivalent of having a part time job, and if you are taking a 
fulltime load of courses as many college students do, this equates to more than a full time 
job.   If you must work, raise a family and take a full load of courses all at the same time, 
we recommend that you get a head start & get organized as soon as possible.  We also 
recommend that you spread out your learning into daily chunks and avoid trying to cram 
or learn material quickly before an exam.  

To be prepared, read through the material before it is covered in class and note or 
highlight the material that is new or confusing.  The instructor’s lecture and activities 
should not be the first exposure to the material.  As you read, test your understanding 
with the Try it Now problems in the book.  If you can’t figure one out, try again after 
class, and ask for help if you still can’t get it.   

As soon as possible after the class session recap the day’s lecture or activities into a 
meaningful format to provide a third exposure to the material.  You could summarize 
your notes into a list of key points, or reread your notes and try to work examples done in 
class without referring back to your notes.  Next, begin any assigned homework.  The 
next day, if the instructor provides the opportunity to clarify topics or ask questions, do 
not be afraid to ask.  If you are afraid to ask, then you are not getting your money’s 
worth!  If the instructor does not provide this opportunity, be prepared to go to a tutoring 
center or build a peer study group. Put in quality effort and time and you can get quality 
results. 

Lastly, if you feel like you do not understand a topic.  Don’t wait, ASK FOR HELP! 

ASK:  Ask a teacher or tutor, Search for ancillaries, Keep a detailed list of questions 
FOR: Find additional resources, Organize the material, Research other learning options 
HELP: Have a support network, Examine your weaknesses, List specific examples & Practice 

Best of luck learning! We hope you like the course & love the price. 
David  & Melonie 
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Section 1.1 Functions and Function Notation 

What is a Function? 

The natural world is full of relationships between quantities that change.  When we see 
these relationships, it is natural for us to ask “If I know one quantity, can I then determine 
the other?”  This establishes the idea of an input quantity, or independent variable, and a 
corresponding output quantity, or dependent variable.  From this we get the notion of a 
functional relationship in which the output can be determined from the input.    

For some quantities, like height and age, there are certainly relationships between these 
quantities.  Given a specific person and any age, it is easy enough to determine their 
height, but if we tried to reverse that relationship and determine age from a given height, 
that would be problematic, since most people maintain the same height for many years.  

Function 

Function:  A rule for a relationship between an input, or independent, quantity and an 
output, or dependent, quantity in which each input value uniquely determines one 
output value.  We say “the output is a function of the input.” 

Example 1 

In the height and age example above, is height a function of age?  Is age a function of 
height? 

In the height and age example above, it would be correct to say that height is a function 
of age, since each age uniquely determines a height.  For example, on my 18th birthday, 
I had exactly one height of 69 inches.   

However, age is not a function of height, since one height input might correspond with 
more than one output age. For example, for an input height of 70 inches, there is more 
than one output of age since I was 70 inches at the age of 20 and 21.  
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Example 2 

At a coffee shop, the menu consists of items and their prices.  Is price a function of the 
item?  Is the item a function of the price? 
 
We could say that price is a function of the item, since each input of an item has one 
output of a price corresponding to it.  We could not say that item is a function of price, 
since two items might have the same price. 

 
 
Example 3 

In many classes the overall percentage you earn in the course corresponds to a decimal 
grade point.  Is decimal grade a function of percentage?  Is percentage a function of 
decimal grade?   
 
For any percentage earned, there would be a decimal grade associated, so we could say 
that the decimal grade is a function of percentage. That is, if you input the percentage, 
your output would be a decimal grade.  Percentage may or may not be a function of 
decimal grade, depending upon the teacher’s grading scheme.  With some grading 
systems, there are a range of percentages that correspond to the same decimal grade. 

 
 

One-to-One Function 

Sometimes in a relationship each input corresponds to exactly one output, and every 
output corresponds to exactly one input.  We call this kind of relationship a one-to-

one function. 

 
 
From Example 3, if each unique percentage corresponds to one unique decimal grade 
point and each unique decimal grade point corresponds to one unique percentage then it 
is a one-to-one function. 
 
 

Try it Now 
Let’s consider bank account information. 
1. Is your balance a function of your bank account number?  

(if you input a bank account number does it make sense that the output is your balance?) 
 
2.  Is your bank account number a function of your balance? 

(if you input a balance  does it make sense that the output is your bank account number?) 
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Function Notation 

 
To simplify writing out expressions and equations involving functions, a simplified 
notation is often used.  We also use descriptive variables to help us remember the 
meaning of the quantities in the problem. 
 
Rather than write “height is a function of age”, we could use the descriptive variable h to 
represent height and we could use the descriptive variable a to represent age. 
 
“height is a function of age”  if we name the function f we write 
“h is f of a”       or more simply 
h = f(a)      we could instead name the function h and write 
h(a)    which is read “h of a” 
 
Remember we can use any variable to name the function; the notation h(a) shows us that 
h depends on a.  The value “a” must be put into the function “h” to get a result.  Be 
careful - the parentheses indicate that age is input into the function (Note: do not confuse 
these parentheses with multiplication!).   
 
 

Function Notation 

The notation output = f(input) defines a function named f.  This would be read “output 
is f of input” 

 
 
Example 4 

Introduce function notation to represent a function that takes as input the name of a 
month, and gives as output the number of days in that month. 
 
The number of days in a month is a function of the name of the month, so if we name 
the function f, we could write “days = f(month)” or  d = f(m). If we simply name the 
function d, we could write  d(m) 
 
For example, d(March) = 31, since March has 31 days. The notation d(m) reminds us 
that the number of days, d (the output) is dependent on the name of the month, m (the 
input) 

 
 
Example 5 

A function N = f(y) gives the number of police officers, N, in a town in year y.  What 
does f(2005) = 300 tell us? 
 
When we read f(2005) = 300, we see the input quantity is 2005, which is a value for the 
input quantity of the function, the year (y).  The output value is 300, the number of 
police officers (N), a value for the output quantity.  Remember N=f(y).  This tells us that 
in the year 2005 there were 300 police officers in the town. 
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Tables as Functions 

 
Functions can be represented in many ways:  Words (as we did in the last few examples), 
tables of values, graphs, or formulas.  Represented as a table, we are presented with a list 
of input and output values.   
In some cases, these values represent everything we know about the relationship, while in 
other cases the table is simply providing us a few select values from a more complete 
relationship. 
 
Table 1:  This table represents the input, number of the month (January = 1, February = 2, 
and so on) while the output is the number of days in that month. This represents 
everything we know about the months & days for a given year (that is not a leap year) 
 

(input) Month 
number, m 

1 2 3 4 5 6 7 8 9 10 11 12 

(output) Days 
in month, D 

31 28 31 30 31 30 31 31 30 31 30 31 

 
Table 2:  The table below defines a function Q = g(n).  Remember this notation tells us g 
is the name of the function that takes the input n and gives the output Q. 
 

n 1 2 3 4 5 

Q 8 6 7 6 8 

 
Table 3:  This table represents the age of children in years and their corresponding 
heights.  This represents just some of the data available for height and ages of children. 
 

(input) a, age 
in years 

5 5 6 7 8 9 10 

(output) h, 
height inches 

40 42 44 47 50 52 54 

 
 
Example 6 

Which of these tables define a function (if any)?  Are any of them one-to-one? 
 

 
The first and second tables define functions.  In both, each input corresponds to exactly 
one output.  The third table does not define a function since the input value of 5 
corresponds with two different output values. 
 

Input Output 

1 0 

5 2 

5 4 

 

Input Output 

-3 5 

0 1 

4 5 

 

Input Output 

2 1 

5 3 

8 6 
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Only the first table is one-to-one; it is both a function, and each output corresponds to 
exactly one input.  Although table 2 is a function, because each input corresponds to 
exactly one output, each output does not correspond to exactly one input so this 
function is not one-to-one.  Table 3 is not even a function and so we don’t even need to 
consider if it is a one-to-one function. 

 
 

Try it Now 
3. If each percentage earned translated to one letter grade, would this be a function?  Is it 

one-to-one?  

 
 
Solving and Evaluating Functions: 

 
When we work with functions, there are two typical things we do: evaluate and solve. 
 Evaluating a function is what we do when we know an input, and use the function to 
determine the corresponding output.  Evaluating will always produce one result, since 
each input of a function corresponds to exactly one output.   
 
Solving equations involving a function is what we do when we know an output, and use 
the function to determine the inputs that would produce that output.  Solving a function 
could produce more than one solution, since different inputs can produce the same 
output. 
 
 
Example 7 

Using the table shown, where Q=g(n) 
 
a) Evaluate g(3) 
 
Evaluating g(3) (read: “g of 3”) 
means that we need to determine the output value, Q, of the function g given the input 
value of n=3.  Looking at the table, we see the output corresponding to n=3 is Q=7, 
allowing us to conclude g(3) = 7. 
 
b) Solve g(n) = 6 
 
Solving g(n) = 6 means we need to determine what input values, n, produce an output 
value of 6.  Looking at the table we see there are two solutions: n = 2 and n = 4. 
 
When we input 2 into the function g, our output is Q = 6 
 
When we input 4 into the function g, our output is also Q = 6 

 
 

n 1 2 3 4 5 

Q 8 6 7 6 8 
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Try it Now 
4. Using the function in Example 7, evaluate g(4) 

 
 

Graphs as Functions 

 
Oftentimes a graph of a relationship can be used to define a 
function.  By convention, graphs are typically created with the 
input quantity along the horizontal axis and the output quantity 
along the vertical. 
 
The most common graph has y on the vertical axis and x on the 
horizontal axis, and we say y is a function of x, or y = f(x) when 
the function is named f. 
 
 
Example 8 

Which of these graphs defines a function y=f(x)?  Which of these graphs defines a one-
to-one function? 

        
 
Looking at the three graphs above, the first two define a function y=f(x), since for each 
input value along the horizontal axis there is exactly one output value corresponding, 
determined by the y-value of the graph.  The 3rd graph does not define a function y=f(x) 
since some input values, such as x=2, correspond with more than one output value. 
 
Graph 1 is not a one-to-one function.  For example, the output value 3 has two 
corresponding input values, -1 and 2.3 
 
Graph 2 is a one-to-one function; each input corresponds to exactly one output, and 
every output corresponds to exactly one input. 
 
Graph 3 is not even a function so there is no reason to even check to see if it is a one-to-
one function. 
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Vertical Line Test 

The vertical line test is a handy way to think about whether a graph defines the 
vertical output as a function of the horizontal input.  Imagine drawing vertical lines 
through the graph.  If any vertical line would cross the graph more than once, then the 
graph does not define only one vertical output for each horizontal input. 

 
 

Horizontal Line Test 

Once you have determined that a graph defines a function, an easy way to determine if 
it is a one-to-one function is to use the horizontal line test.  Draw horizontal lines 
through the graph. If any horizontal line crosses the graph more than once, then the 
graph does not define a one-to-one function. 

 
 
Evaluating a function using a graph requires taking the given input and using the graph to 
look up the corresponding output.  Solving a function equation using a graph requires 
taking the given output and looking on the graph to determine the corresponding input. 
 
 
Example 9 

Given the graph of f(x) 
a) Evaluate f(2) 
b) Solve f(x) = 4 
 
a) To evaluate f(2), we find the input of x=2 on the 
horizontal axis.  Moving up to the graph gives the 
point (2, 1), giving an output of y=1.   f(2) = 1. 
 
b) To solve f(x) = 4, we find the value 4 on the 
vertical axis because if f(x) = 4 then 4 is the output. 
 Moving horizontally across the graph gives two 
points with the output of 4: (-1,4) and (3,4).  These 
give the two solutions to f(x) = 4:  x = -1 or x = 3 
This means f(-1)=4 and f(3)=4, or when the input is -1 or 3, the output is 4. 

 
 
Notice that while the graph in the previous example is a function, getting two input 
values for the output value of 4 shows us that this function is not one-to-one. 
 
 

Try it Now 
5.  Using the graph from example 9, solve f(x)=1. 
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Formulas as Functions 

 
When possible, it is very convenient to define relationships using formulas.  If it is 
possible to express the output as a formula involving the input quantity, then we can 
define a function. 
 
 
Example 10 

Express the relationship 2n + 6p = 12 as a function p = f(n) if possible. 
 
To express the relationship in this form, we need to be able to write the relationship 
where p is a function of n, which means writing it as p = [something involving n].   
 
2n + 6p = 12    subtract 2n from both sides 
6p = 12 - 2n     divide both sides by 6 and simplify 
 

12 2 12 2 1
2

6 6 6 3

n n
p n

−
= = − = −  

 
Having rewritten the formula as p=, we can now express p as a function: 

1
( ) 2

3
p f n n= = −   

 
 
It is important to note that not every relationship can be expressed as a function with a 
formula. 
 
Note the important feature of an equation written as a function is that the output value can 
be determined directly from the input by doing evaluations - no further solving is 
required.  This allows the relationship to act as a magic box that takes an input, processes 
it, and returns an output.  Modern technology and computers rely on these functional 
relationships, since the evaluation of the function can be programmed into machines, 
whereas solving things is much more challenging. 
 
 
Example 11 

Express the relationship 2 2 1x y+ =  as a function y = f(x) if possible. 

 
If we try to solve for y in this equation: 

2 21y x= −  

21y x= ± −  

 
We end up with two outputs corresponding to the same input, so this relationship cannot 
be represented as a single function y = f(x). 
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As with tables and graphs, it is common to evaluate and solve functions involving 
formulas.  Evaluating will require replacing the input variable in the formula with the 
value provided and calculating.  Solving will require replacing the output variable in the 
formula with the value provided, and solving for the input(s) that would produce that 
output. 
 
 
Example 12 

Given the function 3( ) 2k t t= +  

a) Evaluate k(2) 
b) Solve k(t) = 1 
 
a) To evaluate k(2), we plug in the input value 2 into the formula wherever we see the 
input variable t, then simplify 

3(2) 2 2k = +  

(2) 8 2k = +  

So k(2) = 10 
 
b) To solve k(t) = 1, we set the formula for k(t) equal to 1, and solve for the input value 
that will produce that output 

k(t) = 1           substitute the original formula 3( ) 2k t t= +   
3 2 1t + =   subtract 2 from each side 
3 1t = −   take the cube root of each side 

1t = −  
 
When solving an equation using formulas, you can check your answer by using your 
solution in the original equation to see if your calculated answer is correct. 
 

We want to know if ( ) 1k t =  is true when 1t = − . 
3( 1) ( 1) 2k − = − +  

          = 1 2− +  
 =  1 which was the desired result. 

 
 
Example 13 

Given the function 2( ) 2h p p p= +  

a) Evaluate h(4) 
b) Solve h(p) = 3 
 
To evaluate h(4) we substitute the value 4 for the input variable p in the given function. 

a) 2(4) (4) 2(4)h = +  

          = 16 + 8 
   = 24 
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b) h(p) = 3  Substitute the original function 2( ) 2h p p p= +  
2 2 3p p+ =   This is quadratic, so we can rearrange the equation to get it = 0 
2 2 3 0p p+ − =  subtract 3 from each side  
2 2 3 0p p+ − =  this is factorable, so we factor it 

( 3)( 1) 0p p+ − =   

By the zero factor theorem since ( 3)( 1) 0p p+ − = , either ( 3) 0p + =  or ( 1) 0p − =  (or 

both of them equal 0) and so we solve both equations for p, finding p = -3 from the first 
equation and  p = 1 from the second equation. 
 
This gives us the solution: h(p) = 3 when p = 1 or p = -3               
 
We found two solutions in this case, which tells us this function is not one-to-one. 

 
 

Try it Now 

6. Given the function ( ) 4g m m= −  

a. Evaluate g(5) 
b. Solve g(m) = 2 

 
 
Basic Toolkit Functions 
 
In this text, we will be exploring functions – the shapes of their graphs, their unique 
features, their equations, and how to solve problems with them.  When learning to read, 
we start with the alphabet.  When learning to do arithmetic, we start with numbers.  
When working with functions, it is similarly helpful to have a base set of elements to 
build from.  We call these our “toolkit of functions” – a set of basic named functions for 
which we know the graph, equation, and special features. 
 
For these definitions we will use x as the input variable and f(x) as the output variable. 
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Toolkit Functions 

Linear   

Constant:  ( )f x c= , where c is a  constant (number) 

Identity:  ( )f x x=  

 

Absolute Value:    xxf =)(  

 

Power 

Quadratic:  2)( xxf =   

Cubic:   3)( xxf =  

 Reciprocal:  
1

( )f x
x

=  

Reciprocal squared: 
2

1
( )f x

x
=     

Square root:  2( )f x x x= =  

Cube root:  3( )f x x=     

 
 
You will see these toolkit functions, combinations of toolkit functions, their graphs and 
their transformations frequently throughout this book.  In order to successfully follow 
along later in the book, it will be very helpful if you can recognize these toolkit functions 
and their features quickly by name, equation, graph and basic table values.  
 
Not every important equation can be written as y = f(x).  An example of this is the 
equation of a circle.  Recall the distance formula for the distance between two points: 

( ) ( )2

12

2

12 yyxxdist −+−=  

A circle with radius r with center at (h, k) can be described as all points (x, y) a distance 

of r from the center, so using the distance formula, ( ) ( )22
kyhxr −+−= , giving 

 
 

Equation of a circle 

A circle with radius r with center (h, k) has equation ( ) ( )222 kyhxr −+−=  
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Graphs of the Toolkit Functions 

 

Constant Function: ( ) 2f x =     Identity: ( )f x x=   Absolute Value: xxf =)(   

   
 

Quadratic: 2)( xxf =   Cubic: 3)( xxf =   Square root: ( )f x x=  

 

    
 
 
 

Cube root: 3( )f x x=   Reciprocal: 
1

( )f x
x

=           Reciprocal squared: 
2

1
( )f x

x
=   
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Important Topics of this Section 

Definition of a function 

Input (independent variable) 

Output (dependent variable) 

Definition of a one-to-one function 

Function notation 

Descriptive variables 

Functions in words, tables, graphs & formulas 

Vertical line test 

Horizontal line test 

Evaluating a function at a specific input value 

Solving a function given a specific output value 

Toolkit Functions 

 
 

Try it Now Answers 
1. Yes: for each bank account, there would be one balance associated 

2. No:  there could be several bank accounts with the same balance 

3. Yes it’s a function; No, it’s not one-to-one (several percents give the same letter grade) 

4. When n=4, Q=g(4)=6 

5. There are two points where the output is 1:  x = 0 or x = 2 

6. a. 145)5( =−=g  

b. 24 =−m .  Square both sides to get 44 =−m .  m = 8 
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Section 1.1 Exercises 

 
1. The amount of garbage, G, produced by a city with population p is given by 

  ( )G f p= . G is measured in tons per week, and p is measured in thousands of people.   

a. The town of Tola has a population of 40,000 and produces 13 tons of garbage 

each week. Express this information in terms of the function f. 

b. Explain the meaning of the statement ( )5 2f = . 

 

2. The number of cubic yards of dirt, D, needed to cover a garden with area a square 

feet is given by ( )D g a= .   

a. A garden with area 5000 ft2 requires 50 cubic yards of dirt.  Express this 

information in terms of the function g. 

b. Explain the meaning of the statement ( )100 1g = . 

 
3. Let ( )f t  be the number of ducks in a lake t years after 1990.  Explain the meaning of 

each statement: 

a. ( )5 30f =   b. ( )10 40f =  

 
4. Let ( )h t  be the height above ground, in feet, of a rocket t seconds after launching.  

Explain the meaning of each statement: 

a. ( )1 200h =   b. ( )2 350h =  

 

5. Select all of the following graphs which represent y as a function of x. 

a   b     c  

d    e    f  
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6. Select all of the following graphs which represent y as a function of x. 

a     b   c  

 d    e   f  
  
7. Select all of the following tables which represent y as a function of x. 

a. x 5 10 15 

y 3 8 14 
 

b. x 5 10 15 

y 3 8 8 
 

c. x 5 10 10 

y 3 8 14 
 

 

8. Select all of the following tables which represent y as a function of x. 

a. x 2 6 13 

y 3 10 10 
 

b. x 2 6 6 

y 3 10 14 
 

c. x 2 6 13 

y 3 10 14 
 

 
9. Select all of the following tables which represent y as a function of x. 

a. x y 

0 -2 

3 1 

4 6 

8 9 

3 1 
 

b. x y 

-1 -4 

2 3 

5 4 

8 7 

12 11 
 

c. x y 

0 -5 

3 1 

3 4 

9 8 

16 13 
 

d. x y 

-1 -4 

1 2 

4 2 

9 7 

12 13 
 

        

10. Select all of the following tables which represent y as a function of x. 

a. x y 

-4 -2 

3 2 

6 4 

9 7 

12 16 
 

b. x y 

-5 -3 

2 1 

2 4 

7 9 

11 10 
 

c. x y 

-1 -3 

1 2 

5 4 

9 8 

1 2 
 

d. x y 

-1 -5 

3 1 

5 1 

8 7 

14 12 
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11. Select all of the following tables which represent y as a function of x and are one-to-

one. 

a. x 3 8 12 

y 4 7 7 
 

b. x 3 8 12 

y 4 7 13 
 

c. x 3 8 8 

y 4 7 13 
 

 
12. Select all of the following tables which represent y as a function of x and are one-to-

one. 

a. x 2 8 8 

y 5 6 13 
 

b. x 2 8 14 

y 5 6 6 
 

c. x 2 8 14 

y 5 6 13 
 

 
13. Select all of the following graphs which are one-to-one functions. 

a.   b.    c.  

d.   e.    f.  
  
14. Select all of the following graphs which are one-to-one functions. 

a  b   c  

 d  e   f   
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Given each function ( )f x  graphed, evaluate (1)f  and (3)f  

15.     16.  
 
17. Given the function ( )g x  graphed here, 

a.    Evaluate (2)g  

b. Solve ( ) 2g x =  

 

18. Given the function ( )f x  graphed here. 

a. Evaluate ( )4f  

b. Solve ( )  4f x =  

 

 
19. Based on the table below, 

a. Evaluate (3)f     b. Solve ( ) 1 f x =  

x 0 1 2 3 4 5 6 7 8 9 
( )f x  74 28 1 53 56 3 36 45 14 47 

 
20. Based on the table below, 

a. Evaluate (8)f     b. Solve ( )  7f x =  

x 0 1 2 3 4 5 6 7 8 9 
( )f x  62 8 7 38 86 73 70 39 75 34 

 

For each of the following functions, evaluate:  ( )2f − , ( 1)f − , (0)f , (1)f , and (2)f  

21. ( ) 4 2f x x= −     22. ( ) 8 3f x x= −  

23. ( ) 28  7   3f x x x= − +     24. ( ) 26  7   4f x x x= − +  

25. ( ) 3 2f x x x= − +     26. ( ) 4 25f x x x= +  

27. ( ) 3 3f x x= + +     28. ( ) 34 2f x x= − −   

29. ( ) ( )2 ( 3)f x x x= − +    30. ( ) ( ) ( )
2

3 1f x x x= + −  

31. ( )
3

1

x
f x

x

−
=

+
     32. ( )

2

2

x
f x

x

−
=

+
 

33. ( ) 2x
f x =      34. ( ) 3x

f x =  
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35. Suppose ( ) 2 8 4f x x x= + − . Compute the following: 

a. ( 1) (1)f f− +        b. ( 1) (1)f f− −  

 

36. Suppose ( ) 2 3f x x x= + + . Compute the following: 

a. ( 2) (4)f f− +    b. ( 2) (4)f f− −  

 

37.  Let ( ) 3 5f t t= +  

a. Evaluate (0)f   b. Solve ( ) 0f t =  

 

38. Let ( ) 6 2g p p= −  

a. Evaluate (0)g   b. Solve ( ) 0g p =  

 

39. Match each function name with its equation. 
a.  y x=  

b.  3
y x=  

c.  3y x=  

d. 
1

y
x

=  

e. 2
y x=  

f. y x=  

g. y x=  

h. 
2

1
y

x
=  

40.  Match each graph with its equation. 

a. y x=  

b. 3
y x=  

c. 3y x=  

d. 
1

y
x

=  

e. 2
y x=  

f. y x=  

g. y x=  

h. 
2

1
y

x
=  

 

i. ii. iii. iv. 

    
 
v. 

 
vi. 

 
vii. 

 
viii. 

    

i. Cube root 
ii. Reciprocal 

iii. Linear 
iv. Square Root 
v. Absolute Value 

vi. Quadratic 
vii. Reciprocal Squared 

viii. Cubic 
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41. Match each table with its equation. 

a. 2
y x=  

b. y x=  

c. y x=  

d. 1/y x=  

e. | |y x=  

f. 3
y x=  

 

  
  
 
 
 
 
42. Match each equation with its table 

a. Quadratic 
b. Absolute Value 
c. Square Root 
d. Linear 
e. Cubic 
f. Reciprocal 

  
  
  
  
 
 
 
 
 
 
43. Write the equation of the circle centered at  (3 , 9 )−   with radius 6.  

 
44. Write the equation of the circle centered at  (9 , 8 )−   with radius 11.   

 
45. Sketch a reasonable graph for each of the following functions.  [UW] 

a. Height of a person depending on age. 

b. Height of the top of your head as you jump on a pogo stick for 5 seconds. 

c. The amount of postage you must put on a first class letter, depending on the 

weight of the letter. 

 

i. In Out 

-2 -0.5 

-1 -1 

0 _ 

1 1 

2 0.5 

3 0.33 
 

ii. In Out 

-2 -2 

-1 -1 

0 0 

1 1 

2 2 

3 3 
 

iii. In Out 

-2 -8 

-1 -1 

0 0 

1 1 

2 8 

3 27 
 

      

iv. In Out 

-2 4 

-1 1 

0 0 

1 1 

2 4 

3 9 
 

v. In Out 

-2 _ 

-1 _ 

0 0 

1 1 

4 2 

9 3 
 

vi. In Out 

-2 2 

-1 1 

0 0 

1 1 

2 2 

3 3 
 

 

i. In Out 

-2 -0.5 

-1 -1 

0 _ 

1 1 

2 0.5 

3 0.33 
 

ii. In Out 

-2 -2 

-1 -1 

0 0 

1 1 

2 2 

3 3 
 

iii. In Out 

-2 -8 

-1 -1 

0 0 

1 1 

2 8 

3 27 
 

      

iv. In Out 

-2 4 

-1 1 

0 0 

1 1 

2 4 

3 9 
 

v. In Out 

-2 _ 

-1 _ 

0 0 

1 1 

4 2 

9 3 
 

vi. In Out 

-2 2 

-1 1 

0 0 

1 1 

2 2 

3 3 
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46. Sketch a reasonable graph for each of the following functions.  [UW] 

a. Distance of your big toe from the ground as you ride your bike for 10 seconds. 

b. Your height above the water level in a swimming pool after you dive off the high 

board.  

c. The percentage of dates and names you’ll remember for a history test, depending 

on the time you study. 

 

47. Using the graph shown, 

a. Evaluate ( )f c  

b. Solve ( )f x p=  

c. Suppose ( )f b z= .  Find ( )f z  

d. What are the coordinates of points L and K? 

 

 

 

48. Dave leaves his office in Padelford Hall on his way to teach in Gould Hall. Below are 

several different scenarios. In each case, sketch a plausible (reasonable) graph of the 

function s = d(t) which keeps track of Dave’s distance s from Padelford Hall at time t. 

Take distance units to be “feet” and time units to be “minutes.” Assume Dave’s path 

to Gould Hall is long a straight line which is 2400 feet long.  [UW] 

 
 

a. Dave leaves Padelford Hall and walks at a constant spend until he reaches Gould 

Hall 10 minutes later. 

 

b. Dave leaves Padelford Hall and walks at a constant speed. It takes him 6 minutes 

to reach the half-way point. Then he gets confused and stops for 1 minute. He 

then continues on to Gould Hall at the same constant speed he had when he 

originally left Padelford Hall. 

 

c. Dave leaves Padelford Hall and walks at a constant speed.  It takes him 6 minutes 

to reach the half-way point. Then he gets confused and stops for 1 minute to 

figure out where he is. Dave then continues on to Gould Hall at twice the constant 

speed he had when he originally left Padelford Hall. 

 

 

x 

f(x) 

a b c 

p 

r 
t 

K 

L 
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d. Dave leaves Padelford Hall and walks at a constant speed.  It takes him 6 minutes 

to reach the half-way point. Then he gets confused and stops for 1 minute to 

figure out where he is. Dave is totally lost, so he simply heads back to his office, 

walking the same constant speed he had when he originally left Padelford Hall. 

 

e. Dave leaves Padelford heading for Gould Hall at the same instant Angela leaves 

Gould Hall heading for Padelford Hall. Both walk at a constant speed, but Angela 

walks twice as fast as Dave. Indicate a plot of “distance from Padelford” vs. 

“time” for the both Angela and Dave. 

 

f. Suppose you want to sketch the graph of a new function s = g(t) that keeps track 

of Dave’s distance s from Gould Hall at time t. How would your graphs change in 

(a)-(e)? 
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Section 1.2 Domain and Range  

 
One of our main goals in mathematics is to model the real world with mathematical 
functions.  In doing so, it is important to keep in mind the limitations of those models we 
create.   
 
This table shows a relationship between circumference and height of a tree as it grows.   
 

Circumference, c 1.7 2.5 5.5 8.2 13.7 

Height, h 24.5 31 45.2 54.6 92.1 

 
While there is a strong relationship between the two, it would certainly be ridiculous to 
talk about a tree with a circumference of -3 feet, or a height of 3000 feet.  When we 
identify limitations on the inputs and outputs of a function, we are determining the 
domain and range of the function. 
 
 

Domain and Range 

Domain:  The set of possible input values to a function 

Range:  The set of possible output values of a function 

 
 
Example 1 

Using the tree table above, determine a reasonable domain and range. 
 
We could combine the data provided with our own experiences and reason to 
approximate the domain and range of the function h = f(c).  For the domain, possible 
values for the input circumference c, it doesn’t make sense to have negative values, so c 
> 0.  We could make an educated guess at a maximum reasonable value, or look up that 
the maximum circumference measured is about 119 feet1.  With this information, we 

would say a reasonable domain is 0 119c< ≤ feet.   
 
Similarly for the range, it doesn’t make sense to have negative heights, and the 
maximum height of a tree could be looked up to be 379 feet, so a reasonable range is 

0 379h< ≤ feet. 
 
 
 
 
 
 
 

                                                 
1 http://en.wikipedia.org/wiki/Tree, retrieved July 19, 2010 
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Example 2 

When sending a letter through the United States Postal Service, the price depends upon 
the weight of the letter2, as shown in the table below.  Determine the domain and range. 

 
Suppose we notate Weight by w and Price by p, and set up a function named P, where 
Price, p is a function of Weight, w.  p = P(w). 
 
Since acceptable weights are 3.5 ounces or less, and negative weights don’t make sense, 

the domain would be 0 3.5w< ≤ .  Technically 0 could be included in the domain, but 
logically it would mean we are mailing nothing, so it doesn’t hurt to leave it out. 
 
Since possible prices are from a limited set of values, we can only define the range of 
this function by listing the possible values.  The range is p = $0.44, $0.61, $0.78, or 
$0.95. 

 
 

Try it Now 
1. The population of a small town in the year 1960 was 100 people.  Since then the 

population has grown to 1400 people reported during the 2010 census. Choose 
descriptive variables for your input and output and use interval notation to write the 
domain and range. 

 
 
Notation 

 
In the previous examples, we used inequalities to describe the domain and range of the 
functions.  This is one way to describe intervals of input and output values, but is not the 
only way.  Let us take a moment to discuss notation for domain and range. 
 

Using inequalities, such as 0 163c< ≤ , 0 3.5w< ≤ , and 0 379h< ≤  imply that we are 
interested in all values between the low and high values, including the high values in 
these examples. 
 
However, occasionally we are interested in a specific list of numbers like the range for 
the price to send letters,  p = $0.44, $0.61, $0.78, or $0.95.  These numbers represent a set 
of specific values: {0.44, 0.61, 0.78, 0.95} 
 

                                                 
2 http://www.usps.com/prices/first-class-mail-prices.htm, retrieved July 19, 2010 

Letters 

Weight not Over Price 

1 ounce $0.44 

2 ounces $0.61 

3 ounces $0.78 

3.5 ounces $0.95 
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Representing values as a set, or giving instructions on how a set is built, leads us to 
another type of notation to describe the domain and range. 
 
Suppose we want to describe the values for a variable x that are 10 or greater, but less 

than 30.  In inequalities, we would write 10 30x≤ < .   
 
When describing domains and ranges, we sometimes extend this into set-builder 

notation, which would look like this: { }|10 30x x≤ < .  The curly brackets {} are read as 

“the set of”, and the vertical bar | is read as “such that”, so altogether we would read 

{ }|10 30x x≤ <  as “the set of x-values such that 10 is less than or equal to x and x is less 

than 30.” 
 
When describing ranges in set-builder notation, we could similarly write something like 

{ }( ) | 0 ( ) 100f x f x< < , or if the output had its own variable, we could use it.  So for our 

tree height example above, we could write for the range { }| 0 379h h< ≤ .  In set-builder 

notation, if a domain or range is not limited, we could write { }|  is a real numbert t , or 

{ }|t t ∈ℝ , read as “the set of t-values such that t is an element of the set of real numbers. 

 
A more compact alternative to set-builder notation is interval notation, in which 
intervals of values are referred to by the starting and ending values.  Curved parentheses 
are used for “strictly less than,” and square brackets are used for “less than or equal to.”  
Since infinity is not a number, we can’t include it in the interval, so we always use curved 
parentheses with ∞ and -∞.  The table below will help you see how inequalities 
correspond to set-builder notation and interval notation: 
 

Inequality Set Builder Notation Interval notation 

5 10h< ≤  { }| 5 10h h< ≤  (5, 10] 

5 10h≤ <  { }| 5 10h h≤ <  [5, 10) 

5 10h< <  { }| 5 10h h< <  (5, 10) 

10h <  { }| 10h h <  ( ,10)−∞  

10h ≥  { }| 10h h ≥  [10, )∞  

all real numbers { }|h h∈ℝ  ( , )−∞ ∞  

 
 
To combine two intervals together, using inequalities or set-builder notation we can use 
the word “or”.  In interval notation, we use the union symbol, ∪ , to combine two 
unconnected intervals together.   
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Example 3 

Describe the intervals of values shown on the line graph below using set builder and 
interval notations. 

  
 
To describe the values, x, that lie in the intervals shown above we would say, “x is a real 
number greater than or equal to 1 and less than or equal to 3, or a real number greater 
than 5.” 
 
As an inequality it is: 1 3 or 5x x≤ ≤ >  

In set builder notation: { }|1 3 or 5x x x≤ ≤ >    

In interval notation:  [1,3] (5, )∪ ∞  

 
 
Remember when writing or reading interval notation: 
Using a square bracket [ means the start value is included in the set 
Using a parenthesis ( means the start value is not included in the set  
 

 

Try it Now 
2.  Given the following interval, write its meaning in words, set builder notation, and 

interval notation. 

     

 

 

Domain and Range from Graphs 

 
We can also talk about domain and range based on graphs.  Since domain refers to the set 
of possible input values, the domain of a graph consists of all the input values shown on 
the graph.  Remember that input values are almost always shown along the horizontal 
axis of the graph.  Likewise, since range is the set of possible output values, the range of 
a graph we can see from the possible values along the vertical axis of the graph.   
 
Be careful – if the graph continues beyond the window on which we can see the graph, 
the domain and range might be larger than the values we can see. 
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Example 4 

Determine the domain and range of the graph below. 
 

 
 
In the graph above3, the input quantity along the horizontal axis appears to be “year”, 
which we could notate with the variable y.  The output is “thousands of barrels of oil per 
day”, which we might notate with the variable b, for barrels.  The graph would likely 
continue to the left and right beyond what is shown, but based on the portion of the 
graph that is shown to us, we can determine the domain is 1975 2008y≤ ≤ , and the 

range is approximately180 2010b≤ ≤ .   
 
In interval notation, the domain would be [1975, 2008] and the range would be about 
[180, 2010].  For the range, we have to approximate the smallest and largest outputs 
since they don’t fall exactly on the grid lines. 

 
 
Remember that, as in the previous example, x and y are not always the input and output 
variables.  Using descriptive variables is an important tool to remembering the context of 
the problem. 
 

 

 

 

 

 

 

                                                 
3 http://commons.wikimedia.org/wiki/File:Alaska_Crude_Oil_Production.PNG, CC-BY-SA, July 19, 2010 
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Try it Now 
3. Given the graph below write the domain and range in interval notation 
 

    

 

 

Domains and Ranges of the Toolkit functions 

 
We will now return to our set of toolkit functions to note the domain and range of each. 
 
Constant Function: ( )f x c=  

The domain here is not restricted; x can be anything.  When this is the case we say the 
domain is all real numbers.  The outputs are limited to the constant value of the function. 
Domain: ( , )−∞ ∞  

Range:  [c]    
Since there is only one output value, we list it by itself in square brackets. 

 
Identity Function: ( )f x x=  

Domain: ( , )−∞ ∞  

Range: ( , )−∞ ∞  

 

Quadratic Function: 2( )f x x=  

Domain: ( , )−∞ ∞  

Range: [0, )∞  

Multiplying a negative or positive number by itself can only yield a positive output.  

  

Cubic Function: 3( )f x x=  

Domain: ( , )−∞ ∞  

Range: ( , )−∞ ∞  
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Reciprocal: 
1

( )f x
x

=  

Domain: ( , 0) (0, )−∞ ∪ ∞  

Range: ( , 0) (0, )−∞ ∪ ∞  

We cannot divide by 0 so we must exclude 0 from the domain. 

One divide by any value can never be 0, so the range will not include 0. 

 

Reciprocal squared: 
2

1
( )f x

x
=  

Domain: ( , 0) (0, )−∞ ∪ ∞  

Range: (0, )∞  

We cannot divide by 0 so we must exclude 0 from the domain.   

 

Cube Root: 3( )f x x=   

Domain: ( , )−∞ ∞  

Range: ( , )−∞ ∞  

 

Square Root: 2( )f x x= , commonly just written as, ( )f x x=  

Domain: [0, )∞  

Range: [0, )∞  

When dealing with the set of real numbers we cannot take the square root of a negative 

number so the domain is limited to 0 or greater. 

 

Absolute Value Function: ( )f x x=  

Domain: ( , )−∞ ∞  

Range: [0, )∞     

Since absolute value is defined as a distance from 0, the output can only be greater than 

or equal to 0. 

 

 

Example 5 

Find the domain of each function:   a) 42)( += xxf       b) 
x

xg
36

3
)(

−
=  

 
a) Since we cannot take the square root of a negative number, we need the inside of the 
square root to be non-negative.   

04 ≥+x  when 4−≥x .   
The domain of f(x) is ),4[ ∞− . 

 
b) We cannot divide by zero, so we need the denominator to be non-zero.   

036 =− x  when x = 2, so we must exclude 2 from the domain.   
The domain of g(x) is ),2()2,( ∞∪−∞ . 
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Piecewise Functions 

 

In the toolkit functions we introduced the absolute value function ( )f x x= .  

With a domain of all real numbers and a range of values greater than or equal to 0, the 
absolute value can be defined as the magnitude or modulus of a number, a real number 
value regardless of sign, the size of the number, or the distance from 0 on the number 
line.  All of these definitions require the output to be greater than or equal to 0. 
 
If we input 0, or a positive value the output is unchanged 

( )f x x=     if   0x ≥  

 
If we input a negative value the sign must change from negative to positive. 

( )f x x= −   if   0x < ,     since multiplying a negative value by -1 makes it positive. 

 
Since this requires two different processes or pieces, the absolute value function is often 
called the most basic piecewise defined function. 
 
 

Piecewise Function 

A piecewise function is a function in which the formula used depends upon the 
domain the input lies in.  We notate this idea like: 

 

formula 1 if domain to use formula 1

( ) formula 2 if domain to use formula 2

formula 3 if domain to use formula 3

f x




= 



 

 
 
Example 6 

A museum charges $5 per person for a guided tour with a group of 1 to 9 people, or a 
fixed $50 fee for 10 or more people in the group.  Set up a function relating the number 
of people, n, to the cost, C. 
 
To set up this function, two different formulas would be needed.  C = 5n would work 
for n values under 10, and C = 50 would work for values of n ten or greater.   Notating 
this: 

5 0 10
( )

50 10

n if n
C n

if n

< <
= 

≥
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Example 7 

A cell phone company uses the function below to determine the cost, C, in dollars for g 
gigabytes of data transfer.   

25 0 2
( )

25 10( 2) 2

if g
C g

g if g

< <
= 

+ − ≥
 

Find the cost of using 1.5 gigabytes of data, and the cost of using 4 gigabytes of data. 
 
To find the cost of using 1.5 gigabytes of data, C(1.5), we first look to see which piece 
of domain our input falls in.  Since 1.5 is less than 2, we use the first formula, giving 
C(1.5) = $25. 
 
The find the cost of using 4 gigabytes of data, C(4), we see that our input of 4 is greater 
than 2, so we’ll use the second formula.  C(4) = 25 + 10(4-2) = $45. 

 
 
Example 8 

Sketch a graph of the function 








>−

≤<

≤

=

26

213

1

)(

2

xifx

xif

xifx

xf  

 
The first two component functions are from our library of Toolkit functions, so we 
know their shapes.  We can imagine graphing each function, then limiting the graph to 
the indicated domain.  At the endpoints of the domain, we put open circles to indicate 
where the endpoint is not included, due to a strictly-less-than inequality, and a closed 
circle where the endpoint is included, due to a less-than-or-equal-to inequality.   
 

    .     
 
For the third function, you should recognize this as a linear 
equation from your previous coursework.  If you remember how 
to graph a line using slope and intercept, you can do that.  
Otherwise, we could calculate a couple values, plot points, and 
connect them with a line.   
 
At x = 2, f(2) = 6 – 2 = 4.  We place an open circle here.  
At x = 3, f(3) = 6 – 3 = 3.  Connect these points with a line. 
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Now that we have each piece individually, we combine them onto the same graph: 

 
 
 

Try it Now 
4. At Pierce College during the 2009-2010 school year tuition rates for in-state residents 

were $89.50 per credit for the first 10 credits, $33 per credit for credits 11-18, and for 
over 18 credits the rate is $73 per credit4.  Write a piecewise defined function for the 
total tuition, T, at Pierce College during 2009-2010 as a function of the number of 
credits taken, c.  Be sure to consider a reasonable domain and range. 

 

 

Important Topics of this Section 

Definition of domain 

Definition of range 

Inequalities 

Interval notation 

Set builder notation 

Domain and Range from graphs 

Domain and Range of toolkit functions 

Piecewise defined functions 

 
 
 
 
 
 
 
 
 
 

                                                 
4 https://www.pierce.ctc.edu/dist/tuition/ref/files/0910_tuition_rate.pdf, retrieved August 6, 2010 
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Try it Now Answers 
1. Domain; y = years [1960,2010] ; Range, p = population,  [100,1400] 

 
2.  a. Values that are less than or equal to -2, or values that are greater than or equal to -1 

and less than 3 

b. { }| 2 1 3x x or x≤ − − ≤ <   

c. ( , 2] [ 1,3)−∞ − ∪ −  

 
3. Domain; y=years, [1952,2002] ; Range, p=population in millions, [40,88] 
 

4. 








>−+

≤<−+

≤

=

18)18(731159

1810)10(33895

105.89

)(

cifc

cifc

cifc

cT   Tuition, T, as a function of credits, c. 

  Reasonable domain should be whole numbers 0 to (answers may vary), e.g. [0, 23]  

  Reasonable range should be $0 – (answers may vary), e.g. [0,1524]  
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Section 1.2 Exercises 

 
Write the domain and range of the function using interval notation.  

1.  2.   
 
Write the domain and range of each graph as an inequality. 

3.   4.  

Suppose that you are holding your toy submarine under the water. You release it and it 
begins to ascend. The graph models the depth of the submarine as a function of time, 
stopping once the sub surfaces.  What is the domain and range of the function in the 
graph? 
 

5.   6.  
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Find the domain of each function 
 

7. ( ) 3 2f x x= −     8. ( ) 5 3f x x= +  

 

9. ( ) 3 6 2f x x= − −     10. ( ) 5 10 2f x x= − −     

 

11. ( )
9

  6
f x

x
=

−
      12. ( )

6

  8
f x

x
=

−
  

 

13. ( )
3 1

4 2

x
f x

x

+
=

+
     14. ( )

5 3

4 1

x
f x

x

+
=

−
 

 

15. ( )
4

4

x
f x

x

+
=

−
    16. ( )

5

6

x
f x

x

+
=

−
  

 

17. ( ) 2

 3

 9  22

x
f x

x x

−
=

+ −
    18. ( ) 2

 8

 8  9

x
f x

x x

−
=

+ −
 

 
 
 
Given each function, evaluate: ( 1)f − , (0)f , (2)f , (4)f  

19. ( )
7 3 0

7 6 0

x if x
f x

x if x

+ <
= 

+ ≥
    20. ( )

4 9 0

4 18 0

x if x
f x

x if x

− <
= 

− ≥
  

 

21. ( )
2 2 2

4 5 2

x if x
f x

x if x

 − <
= 

+ − ≥
   22. ( )

34 1

1 1

x if x
f x

x if x

 − <
= 

+ ≥
  

23. ( )
2

5 0

3 0 3

3

x if x

f x if x

x if x

<


= ≤ ≤
 >

   24. ( )

3 1 0

4 0 3

3 1 3

x if x

f x if x

x if x

 + <


= ≤ ≤
 + >
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Write a formula for the piecewise function graphed below. 

25.  26.  

27.  28.    

29.  30.  

Sketch a graph of each piecewise function 

31. ( )
2

5 2

x if x
f x

if x

 <
= 

≥
    32. ( )

4 0

0

if x
f x

x if x

<
= 

≥
  

33. ( )
2 0

2 0

x if x
f x

x if x

 <
= 

+ ≥
   34. ( ) 3

1 1

1

x if x
f x

x if x

+ <
= 

≥
  

35. ( )

3 2

1 2 1

3 1

if x

f x x if x

if x

≤ −


= − + − < ≤
 >

   36. ( )

3 2

1 2 2

0 2

if x

f x x if x

if x

− ≤ −


= − − < ≤
 >
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Section 1.3 Rates of Change and Behavior of Graphs 

 
Since functions represent how an output quantity varies with an input quantity, it is 
natural to ask about the rate at which the values of the function are changing.   
 
For example, the function C(t) below gives the average cost, in dollars, of a gallon of 
gasoline t years after 2000. 
 

t 2 3 4 5 6 7 8 9 

C(t) 1.47 1.69 1.94 2.30 2.51 2.64 3.01 2.14 

 
If we were interested in how the gas prices had changed between 2002 and 2009, we 
could compute that the cost per gallon had increased from $1.47 to $2.14, an increase of  
$0.67.  While this is interesting, it might be more useful to look at how much the price 
changed per year.  You are probably noticing that the price didn’t change the same 
amount each year, so we would be finding the average rate of change over a specified 
amount of time. 
 
The gas price increased by $0.67 from 2002 to 2009, over 7 years, for an average of 

096.0
7

67.0$
≈

years
dollars per year.  On average, the price of gas increased by about 9.6 

cents each year.  
 
 

Rate of Change 

A rate of change describes how the output quantity changes in relation to the input 
quantity.  The units on a rate of change are “output units per input units” 

 
 
Some other examples of rates of change would be quantities like: 

• A population of rats increases by 40 rats per week 

• A barista earns $9 per hour (dollars per hour) 

• A farmer plants 60,000 onions per acre 

• A car can drive 27 miles per gallon 

• A population of grey whales decreases by 8 whales per year 

• The amount of money in your college account decreases by $4,000 per quarter 
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Average Rate of Change 

The average rate of change between two input values is the total change of the 
function values (output values) divided by the change in the input values. 

Average rate of change = 
Input of Change

Output of Change
=

12

12

xx

yy

x

y

−

−
=

∆

∆
 

 
 
Example 1 

Using the cost-of-gas function from earlier, find the average rate of change between 
2007 and 2009 
 
From the table, in 2007 the cost of gas was $2.64.  In 2009 the cost was $2.14. 
 
The input (years) has changed by 2.  The output has changed by $2.14 - $2.64 = -0.50.  

The average rate of change is then 
years2

50.0$−
 = -0.25 dollars per year 

 
 

Try it Now 
1. Using the same cost-of-gas function, find the average rate of change between 2003 and 

2008 

 
 
Notice that in the last example the change of output was negative since the output value 
of the function had decreased.  Correspondingly, the average rate of change is negative. 
 
 
Example 2 

Given the function g(t) shown here, find the average rate of change on the interval  
[0, 3].  
 
At t = 0, the graph shows 1)0( =g  

At t = 3, the graph shows 4)3( =g  

 
The output has changed by 3 while the input has changed by 
3, giving an average rate of change of: 

1
3

3

03

14
==

−

−
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Example 3 

On a road trip, after picking up your friend who lives 10 miles away, you decide to 
record your distance from home over time.  Find your average speed over the first 6 
hours. 
 
 
 
 
Here, your average speed is the average rate of change.   
You traveled 282 miles in 6 hours, for an average speed of 
292 10 282

6 0 6

−
=

−
= 47 miles per hour 

 
 
We can more formally state the average rate of change calculation using function 
notation. 
 
 

Average Rate of Change using Function Notation 

Given a function f(x), the average rate of change on the interval [a, b] is 

Average rate of change = 
ab

afbf

−

−
=

)()(

Input of Change

Output of Change
 

 
 
Example 4 

Compute the average rate of change of 
x

xxf
1

)( 2
−=  on the interval [2, 4] 

 
We can start by computing the function values at each endpoint of the interval 

2

7

2

1
4

2

1
2)2( 2

=−=−=f  

4

63

4

1
16

4

1
4)4( 2

=−=−=f  

 
Now computing the average rate of change 

Average rate of change = 
8

49

2

4

49

24

2

7

4

63

24

)2()4(
==

−

−

=
−

− ff
 

 
 

Try it Now 

2. Find the average rate of change of xxxf 2)( −=  on the interval [1, 9] 

 

t (hours) 0 1 2 3 4 5 6 7 

D(t) (miles) 10 55 90 153 214 240 292 300 
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Example 5 

The magnetic force F, measured in Newtons, between two magnets is related to the 

distance between the magnets d, in centimeters, by the formula 
2

2
)(

d
dF = .  Find the 

average rate of change of force if the distance between the magnets is increased from 2 
cm to 6 cm. 
 

We are computing the average rate of change of 
2

2
)(

d
dF =  on the interval [2, 6]. 

Average rate of change = 
26

)2()6(

−

− FF
 Evaluating the function 

 
 

26

)2()6(

−

− FF
= 

26

2

2

6

2
22

−

−

     Simplifying 

4

4

2

36

2
−

      Combining the numerator terms 

4

36

16−

      Simplifying further  

9

1−
 Newtons per centimeter 

 
This tells us the magnetic force decreases, on average, by 1/9 Newtons per centimeter 
over this interval.   

 
 
 
Example 6 

Find the average rate of change of 13)( 2
++= tttg on the interval ],0[ a .  Your answer 

will be an expression involving a. 
 
Using the average rate of change formula 

0

)0()(

−

−

a

gag
     Evaluating the function 

0

)1)0(30()13( 22

−

++−++

a

aa
  Simplifying 
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a

aa 1132
−++

    Simplifying further, and factoring 

a

aa )3( +
     Cancelling the common factor a 

3+a  
 
This result tells us the average rate of change between t = 0 and any other point t = a.  
For example, on the interval [0, 5], the average rate of change would be 5+3 = 8. 

 
 

Try it Now 

3. Find the average rate of change of 2)( 3
+= xxf  on the interval ],[ haa + . 

 
 
Graphical Behavior of Functions 

 
As part of exploring how functions change, it is interesting to explore the graphical 
behavior of functions. 
 
 

Increasing/Decreasing 

A function is increasing on an interval if the function values increase as the inputs 
increase.  More formally, a function is increasing if f(b) > f(a) for any two input values 
a and b in the interval with b>a.  The average rate of change of an increasing function 
is positive. 

 

A function is decreasing on an interval if the function values decrease as the inputs 
increase.  More formally, a function is decreasing if f(b) < f(a) for any two input 
values a and b in the interval with b>a.  The average rate of change of a decreasing 
function is negative. 

 
 
Example 7 

Given the function p(t) graphed here, on what intervals 
does the function appear to be increasing? 
 
The function appears to be increasing from t = 1 to t = 3, 
and from t = 4 on.   
 
In interval notation, we would say the function appears to 
be increasing on the interval (1,3) and the interval ),4( ∞ . 
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Notice in the last example that we used open intervals (intervals that don’t include the 
endpoints) since the function is neither increasing nor decreasing at t = 1, 3, or 4.   
 
 

Local Extrema 

A point where a function changes from increasing to decreasing is called a local 

maximum.   

 

A point where a function changes from decreasing to increasing is called a local 

minimum. 

 

Together, local maxima and minima are called the local extrema, or local extreme 
values, of the function. 

 
 
Example 8 

Using the cost of gasoline function from the beginning of the section, find an interval on 
which the function appears to be decreasing.  Estimate any local extrema using the 
table. 
 
 
 
 
It appears that the cost of gas increased from t = 2 to t = 8. It appears the cost of gas 
decreased from t = 8 to t = 9, so the function appears to be decreasing on the interval  
(8, 9). 
 
Since the function appears to change from increasing to decreasing at t = 8, there is 
local maximum at t = 8. 

 
 
Example 9 

Use a graph to estimate the local extrema of the function 
3

2
)(

x

x
xf += .   Use these to 

determine the intervals on which the function is increasing. 
 
Using technology to graph the function, it appears there is a local minimum somewhere 
between x = 2 and x =3, and a symmetric local maximum somewhere between x = -3 
and x = -2. 
 
Most graphing calculators and graphing utilities can estimate the location of maxima 
and minima.  Below are screen images from two different technologies, showing the 
estimate for the local maximum and minimum. 
 

t 2 3 4 5 6 7 8 9 

C(t) 1.47 1.69 1.94 2.30 2.51 2.64 3.01 2.14 
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Based on these estimates, the function is increasing on the intervals )449.2,( −−∞ and 

),449.2( ∞ .  Notice that while we expect the extrema to be symmetric, the two different 

technologies agree only up to 4 decimals due to the differing approximation algorithms 
used by each. 

 
 

Try it Now 

4. Use a graph of the function 20156)( 23
+−−= xxxxf  to estimate the local extrema of 

the function.  Use these to determine the intervals on which the function is increasing 
and decreasing. 

 
 
Concavity 
 
The total sales, in thousands of dollars, for two companies over 4 weeks are shown.   

   
Company A     Company B 

    
As you can see, the sales for each company are increasing, but they are increasing in very 
different ways.  To describe the difference in behavior, we can investigate how the 
average rate of change varies over different intervals.  Using tables of values, 
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From the tables, we can see that the rate of change for company A is decreasing, while 
the rate of change for company B is increasing.   
 
   

     
  
When the rate of change is getting smaller, as with Company A, we say the function is 
concave down.  When the rate of change is getting larger, as with Company B, we say 
the function is concave up. 
 
 

Concavity 

A function is concave up if the rate of change is increasing.   

A function is concave down if the rate of change is decreasing. 

A point where a function changes from concave up to concave down or vice versa is 
called an inflection point. 

 
 
 
 
 

Company A 

Week Sales Rate of 
Change 

0 0  
  5 
1 5  
  2.1 
2 7.1  
  1.6 
3 8.7  
  1.3 
4 10  

 

Company B 

Week Sales Rate of 
Change 

0 0  
  0.5 
1 0.5  
  1.5 
2 2  
  2.5 
3 4.5  
  3.5 
4 8  
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Example 10 

An object is thrown from the top of a building.  The object’s height in feet above 

ground after t seconds is given by the function 216144)( tth −=  for 30 ≤≤ t .  Describe 

the concavity of the graph. 
 
Sketching a graph of the function, we can see that the function 
is decreasing.  We can calculate some rates of change to 
explore the behavior. 
 
 
 
 
 
 
 
 
 
 
 
Notice that the rates of change are becoming more negative, so the rates of change are 
decreasing.  This means the function is concave down. 

 
 
Example 11 

The value, V, of a car after t years is given in the table below.  Is the value increasing or 
decreasing?  Is the function concave up or concave down? 
 
 
Since the values are getting smaller, we can determine that the value is decreasing.  We 
can compute rates of change to determine concavity. 
 
 
 
 
 
Since these values are becoming less negative, the rates of change are increasing, so  
this function is concave up. 

 
 

Try it Now 
5. Is the function described in the table below concave up or concave down? 
 
 
 

t h(t) Rate of 
Change 

0 144  
  -16 
1 128  
  -48 
2 80  
  -80 
3 0  

 

t 0 2 4 6 8 

V(t) 28000 24342 21162 18397 15994 

 

t 0 2 4 6 8 

V(t) 28000 24342 21162 18397 15994 

Rate of change -1829 -1590 -1382.5 -1201.5  

 

x 0 5 10 15 20 

g(x) 10000 9000 7000 4000 0 
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Graphically, concave down functions bend downwards like a frown, and concave up 
function bend upwards like a smile. 

 
 
 
Example 12 

Estimate from the graph shown the intervals 
on which the function is concave down and 
concave up.   
 
On the far left, the graph is decreasing but 
concave up, since it is bending upwards.  It 
begins increasing at x = -2, but it continues to 
bend upwards until about x = -1.   
 
From x = -1 the graph starts to bend 
downward, and continues to do so until about 
x = 2.  The graph then begins curving upwards 
for the remainder of the graph shown. 
 
From this, we can estimate that the graph is concave up on the intervals )1,( −−∞  and 

),2( ∞ , and is concave down on the interval )2,1(− .  The graph has inflection points at  

x = -1 and x = 2. 
 
 
 
 
 

Increasing Decreasing 

Concave 
Down 

Concave 
Up 
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Try it Now 

6. Using the graph from Try it Now 4, 20156)( 23
+−−= xxxxf , estimate the intervals 

on which the function is concave up and concave down. 

 
 
Behaviors of the Toolkit Functions 

 
We will now return to our toolkit functions and discuss their graphical behavior. 
 

Function Increasing/Decreasing Concavity 

Constant Function 
( )f x c=  

Neither increasing nor 
decreasing 
 

Neither concave up nor down 

Identity Function 
( )f x x=  

Increasing Neither concave up nor down 
 

Quadratic Function 
2( )f x x=  

Increasing on ),0( ∞  

Decreasing on )0,(−∞  

Minimum at x = 0 

Concave up ( , )−∞ ∞  

Cubic Function  
3( )f x x=  

 

Increasing Concave down on )0,(−∞  

Concave up on ),0( ∞  

Inflection point at (0,0) 

Reciprocal  
1

( )f x
x

=  

 

Decreasing ),0()0,( ∞∪−∞  Concave down on )0,(−∞  

Concave up on ),0( ∞  

 

Function Increasing/Decreasing Concavity 

Reciprocal squared  

2

1
( )f x

x
=  

 

Increasing on )0,(−∞  

Decreasing on ),0( ∞  

 

Concave up on 
),0()0,( ∞∪−∞  

Cube Root  
3( )f x x=   

 

Increasing Concave down on ),0( ∞  

Concave up on )0,(−∞  

Inflection point at (0,0) 

Square Root  

( )f x x=  

 

Increasing on ),0( ∞  Concave down on ),0( ∞  

Absolute Value 

( )f x x=  

Increasing on ),0( ∞  

Decreasing on )0,(−∞  

 

Neither concave up or down 
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Important Topics of This Section 

Rate of Change 

Average Rate of Change 

Calculating Average Rate of Change using Function Notation 

Increasing/Decreasing 

Local Maxima and Minima (Extrema) 

Inflection points 

Concavity 

 
 

Try it Now Answers 

1. 
yearsyears 5

32.1$

5

69.1$01.3$
=

−
 = 0.264 dollars per year. 

 

2. Average rate of change = 
( ) ( ) ( ) ( )

2

1

8

4

19

13

19

121929

19

)1()9(
==

−

−−
=

−

−−−
=

−

− ff
 

 

3. 
( ) ( )

=
−−++++

=
+−++

=
−+

−+

h

ahahhaa

h

aha

aha

afhaf 223322)(

)(

)()( 3322333

 

    
( ) 22

22322

33
3333

haha
h

hahah

h

hahha
++=

++
=

++
 

 
4.  Based on the graph, the local maximum appears to 

occur at (-1, 28), and the local minimum occurs at (5,-
80).  The function is increasing on ),5()1,( ∞∪−−∞  

and decreasing on )5,1(− . 

 
5.  Calculating the rates of change, we see the rates of 

change become more negative, so the rates of change 
are decreasing.  This function is concave down. 

 
 
 
 
 
6. Looking at the graph, it appears the function is concave down on )2,(−∞  and concave 

up on ),2( ∞ . 

 
 
 

x 0 5 10 15 20 

g(x) 10000 9000 7000 4000 0 

Rate of change -1000 -2000 -3000 -4000  
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Section 1.3 Exercises 

 
1.  The table below gives the annual sales (in millions of dollars) of a product.  What was 

the average rate of change of annual sales… 
a) Between 2001 and 2002? b) Between 2001 and 2004? 

year 1998 1999 2000 2001 2002 2003 2004 2005 2006 

sales 201 219 233 243 249 251 249 243 233 

 

2.  The table below gives the population of a town, in thousands.  What was the average 
rate of change of population… 
a) Between 2002 and 2004? b) Between 2002 and 2006? 

year 2000 2001 2002 2003 2004 2005 2006 2007 2008 

population 87 84 83 80 77 76 75 78 81 

 
 
3.  Based on the graph shown, estimate the average rate of 

change from x = 1 to x = 4.  
 
4. Based on the graph shown, estimate the average rate of 

change from x = 2 to x = 5. 
 
 
 
 
Find the average rate of change of each function on the interval specified. 

5. 2)( xxf =  on [1, 5]    6. 3)( xxq =  on [-4, 2] 

7. 13)( 3
−= xxg  on [-3, 3]   8. 225)( xxh −=  on [-2, 4] 

9. 
3

2 4
6)(

t
ttk +=  on [-1, 3]   10. 

3

14
)(

2

2

+

+−
=

t

tt
tp  on [-3, 1]  

 
Find the average rate of change of each function on the interval specified.  Your answers 
will be expressions involving a parameter (b or h). 

11. 74)( 2
−= xxf  on [1, b]   12. 92)( 2

−= xxg  on [4, b]  

13. 43)( += xxh  on [2, 2+h]   14. 24)( −= xxk  on [3, 3+h] 

15. 
4

1
)(

+
=

t
ta  on [9, 9+h]   16. 

3

1
)(

+
=

x
xb  on [1, 1+h] 

17. 33)( xxj =  on [1, 1+h]   18. 34)( ttr =  on [2, 2+h] 

19. 12)( 2
+= xxf  on [x, x+h]  20. 23)( 2

−= xxg  on [x, x+h] 
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For each function graphed, estimate the intervals on which the function is increasing and 
decreasing. 
 

21.       22.  
 

23.        24.  
 
For each table below, select whether the table represents a function that is increasing or 

decreasing, and whether the function is concave up or concave down. 

25. x f(x) 

1 2 

2 4 

3 8 

4 16 

5 32 
 

26. x g(x) 

1 90 

2 80 

3 75 

4 72 

5 70 
 

27. x h(x) 

1 300 

2 290 

3 270 

4 240 

5 200 
 

28. x k(x) 

1 0 

2 15 

3 25 

4 32 

5 35 
 

        

29. x f(x) 

1 -10 

2 -25 

3 -37 

4 -47 

5 -54 
 

30. x g(x) 

1 -200 

2 -190 

3 -160 

4 -100 

5 0 
 

31. x h(x) 

1 -
100 

2 -50 

3 -25 

4 -10 

5 0 
 

32. x k(x) 

1 -50 

2 -100 

3 -200 

4 -400 

5 -900 
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For each function graphed, estimate the intervals on which the function is concave up and 
concave down, and the location of any inflection points. 

 
33.        34.  
 

35.  36.  
 
Use a graph to estimate the local extrema and inflection points of each function, and to 
estimate the intervals on which the function is increasing, decreasing, concave up, and 
concave down. 
 

37. 54)( 34
+−= xxxf    38. 110105)( 2345

−+++= xxxxxh  

39. 3)( += tttg     40. tttk −=
3/23)(  

41. 410122)( 234
+−−+= xxxxxm  42. 26188)( 234

+−+−= xxxxxn  
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Section 1.4 Composition of Functions 

 
Suppose we wanted to calculate how much it costs to heat a house on a particular day of 
the year.  The cost to heat a house will depend on the average daily temperature, and the 
average daily temperature depends on the particular day of the year.  Notice how we have 
just defined two relationships: The temperature depends on the day, and the cost depends 
on the temperature.  Using descriptive variables, we can notate these two functions. 
 
The first function, C(T), gives the cost C of heating a house when the average daily 
temperature is T degrees Celsius, and the second, T(d), gives the average daily 
temperature on day d of the year in some city.  If we wanted to determine the cost of 
heating the house on the 5th day of the year, we could do this by linking our two functions 
together, an idea called composition of functions.  Using the function T(d), we could 
evaluate T(5) to determine the average daily temperature on the 5th day of the year.  We 
could then use that temperature as the input to the C(T) function to find the cost to heat 
the house on the 5th day of the year:  C(T(5)). 
 

 

Composition of Functions 

When the output of one function is used as the input of another, we call the entire 
operation a composition of functions.  We write f(g(x)), and read this as “f of g of x” 
or “f composed with g at x”.   

 

An alternate notation for composition uses the composition operator: �  

))(( xgf �  is read “f of g of x” or “f composed with g at x”,  just like  f(g(x)). 

 

 

Example 1 

Suppose c(s) gives the number of calories burned doing s sit-ups, and s(t) gives the 
number of sit-ups a person can do in t minutes.  Interpret c(s(3)). 
 

When we are asked to interpret, we are being asked to explain the meaning of the 
expression in words.  The inside expression in the composition is s(3).  Since the input 
to the s function is time, the 3 is representing 3 minutes, and s(3) is the number of sit-
ups that can be done in 3 minutes.  Taking this output and using it as the input to the 
c(s) function will gives us the calories that can be burned by the number of sit-ups that 
can be done in 3 minutes. 

 
 
Note that it is not important that the same variable be used for the output of the inside 
function and the input to the outside function.  However, it is essential that the units on 
the output of the inside function match the units on the input to the outside function, if the 
units are specified. 
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Example 2 

Suppose f(x) gives miles that can be driven in x hours, and g(y) gives the gallons of gas 
used in driving y miles.  Which of these expressions is meaningful: f(g(y)) or g(f(x))? 
 
The expression g(y) takes miles as the input and outputs a number of gallons.  The 
function f(x) is expecting a number of hours as the input; trying to give it a number of 
gallons as input does not make sense.  Remember the units must match, and number of 
gallons does not match number of hours, so the expression f(g(y)) is meaningless. 
 
The expression f(x) takes hours as input and outputs a number of miles driven.  The 
function g(y) is expecting a number of miles as the input, so giving the output of the f(x) 
function (miles driven) as an input value for g(y), where gallons of gas depends on 
miles driven, does make sense.  The expression g(f(x)) makes sense, and will give the 
number of gallons of gas used, g, driving a certain number of miles, f(x), in x hours. 

 
 

Try it Now 
1. In a department store you see a sign that says 50% off clearance merchandise, so final 

cost C depends on the clearance price, p, according to the function C(p). Clearance 
price, p, depends on the original discount, d, given to the clearance item, p(d).  
Interpret C(p(d)). 

 

 

Composition of Functions using Tables and Graphs 

 
When working with functions given as tables and graphs, we can look up values for the 
functions using a provided table or graph, as discussed in section 1.1.  We start evaluation 
from the provided input, and first evaluate the inside function.  We can then use the 
output of the inside function as the input to the outside function.  To remember this, 
always work from the inside out. 
 
 
Example 3 

Using the tables below, evaluate ( (3))f g and ( (4))g f  

 
To evaluate ( (3))f g , we start from the inside with the value 3. We then evaluate the 

inside expression (3)g using the table that defines the function g: (3) 2g = .   

 

x g(x) 

1 3 

2 5 

3 2 

4 7 

 

 

x f(x) 

1 6 

2 8 

3 3 

4 1 
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We can then use that result as the input to the f function, so (3)g  is replaced by the 

equivalent value 2 and we can evaluate (2)f .  Then using the table that defines the 

function f, we find that (2) 8f = . 

( (3)) (2) 8f g f= = . 

 
To evaluate ( (4))g f , we first evaluate the inside expression (4)f using the first table: 

(4) 1f = .  Then using the table for g we can evaluate: 

( (4)) (1) 3g f g= = . 

 
 

Try it Now 
2. Using the tables from the example above, evaluate ( (1))f g  and ( (3))g f . 

 
 
Example 4 

Using the graphs below, evaluate ( (1))f g . 

   
 
To evaluate ( (1))f g , we again start with the inside evaluation.  We evaluate (1)g  using 

the graph of the g(x) function, finding the input of 1 on the horizontal axis and finding 
the output value of the graph at that input.  Here, (1) 3g = .   

 
Using this value as the input to the f function, ( (1)) (3)f g f= .  We can then evaluate 

this by looking to the graph of the f(x) function, finding the input of 3 on the horizontal 
axis, and reading the output value of the graph at this input.   

(3) 6f = , so 6))1(( =gf . 

 
 

Try it Now 
3. Using the graphs from the previous example, evaluate ( (2))g f . 
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Composition using Formulas 

 
When evaluating a composition of functions where we have either created or been given 
formulas, the concept of working from the inside out remains the same.  First, we 
evaluate the inside function using the input value provided, then use the resulting output 
as the input to the outside function. 
 
 
Example 5 

Given tttf −=
2)(  and 23)( += xxh , evaluate ( (1))f h . 

 
Since the inside evaluation is (1)h we start by evaluating the h(x) function at 1: 

52)1(3)1( =+=h  

 
Then ( (1)) (5)f h f= , so we evaluate the f(t) function at an input of 5: 

2055)5())1(( 2
=−== fhf  

 
 

Try it Now 
4. Using the functions from the example above, evaluate ( ( 2))h f − . 

 
 
While we can compose the functions as above for each individual input value, sometimes 
it would be really helpful to find a single formula which will calculate the result of a 
composition f(g(x)).  To do this, we will extend our idea of function evaluation.  Recall 

that when we evaluate a function like tttf −=
2)( , we put whatever value is inside the 

parentheses after the function name into the formula wherever we see the input variable.   
 
 
Example 6 

Given tttf −=
2)( , evaluate (3)f  and ( 2)f − . 

 

33)3( 2
−=f  

)2()2()2( 2
−−−=−f  

 
We could simplify the results above if we wanted to  

2(3) 3 3 9 3 6f = − = − =  
2( 2) ( 2) ( 2) 4 2 6f − = − − − = + =  
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We are not limited, however, to using a numerical value as the input to the function. We 
can put anything into the function: a value, a different variable, or even an algebraic 
expression, provided we use the input expression everywhere we see the input variable.   
 
 
Example 7 

Using the function from the previous example, evaluate f(a). 
 

This means that the input value for t is some unknown quantity a.  As before, we 
evaluate by replacing the input variable t with the input quantity, in this case a. 

aaaf −=
2)(  

 
 
The same idea can then be applied to expressions more complicated than a single letter.   
 
 
Example 8 

Using the same f(t) function from above, evaluate )2( +xf . 

 
Everywhere in the formula for f where there was a t, we would replace it with the input 
( 2)x + .  Since in the original formula the input t was squared in the first term, the entire 

input 2x+  needs to be squared when we substitute, so we need to use grouping 
parentheses.  To avoid problems, it is advisable to always use parentheses around 
inputs. 
 

)2()2()2( 2
+−+=+ xxxf  

 

We could simplify this expression further to 23)2( 2
++=+ xxxf  if we wanted to: 

( 2) ( 2)( 2) ( 2)f x x x x+ = + + − +   Use the “FOIL” technique (first, outside, inside, last) 
2( 2) 2 2 4 ( 2)f x x x x x+ = + + + − +   distribute the negative sign  
2( 2) 2 2 4 2f x x x x x+ = + + + − −      combine like terms 
2( 2) 3 2f x x x+ = + +   

 
 
Example 9 

Using the same function, evaluate )( 3
tf . 

 
Note that in this example, the same variable is used in the input expression and as the 
input variable of the function.  This doesn’t matter – we still replace the original input t 

in the formula with the new input expression, 3
t . 

363233 )()()( tttttf −=−=  
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Try it Now 

5. Given xxxg −= 3)( , evaluate )2( −tg . 

 
 
This now allows us to find an expression for a composition of functions.  If we want to 
find a formula for f(g(x)), we can start by writing out the formula for g(x).   We can then 
evaluate the function f(x) at that expression, as in the examples above.  
 
 
Example 10 

Let 2)( xxf =  and x
x

xg 2
1

)( −= , find f(g(x)) and g(f(x)). 

 
To find f(g(x)), we start by evaluating the inside, writing out the formula for g(x). 

x
x

xg 2
1

)( −=  

We then use the expression 
1

2x
x

 
− 

 
 as input for the function f. 









−= x

x
fxgf 2

1
))((  

 
We then evaluate the function f(x) using the formula for g(x) as the input. 

Since 2)( xxf = , 
2

2
1

2
1









−=








− x

x
x

x
f  

This gives us the formula for the composition:  
2

2
1

))(( 







−= x

x
xgf . 

 
Likewise, to find g(f(x)), we evaluate the inside, writing out the formula for f(x) 

( )2))(( xgxfg =  

 
Now we evaluate the function g(x) using x2 as the input. 

2

2
2

1
))(( x

x
xfg −=  

 
 

Try it Now 

6. Let xxxf 3)( 3
+=  and xxg =)( , find f(g(x)) and g(f(x)). 
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Example 11 

A city manager determines that the tax revenue, R, in millions of dollars collected on a 

population of p thousand people is given by the formula pppR += 03.0)( , and that 

the city’s population, in thousands, is predicted to follow the formula 
23.0260)( tttp ++= , where t is measured in years after 2010.  Find a formula for the 

tax revenue as a function of the year. 
 
Since we want tax revenue as a function of the year, we want year to be our initial input, 
and revenue to be our final output.  To find revenue, we will first have to predict the 
city population, and then use that result as the input to the tax function.  So we need to 
find R(p(t)).  Evaluating this, 
 

( ) ( ) 222 3.02603.026003.03.0260))(( ttttttRtpR +++++=++=  

 
This composition gives us a single formula which can be used to predict the tax revenue 
during a given year, without needing to find the intermediary population value.   
 
For example, to predict the tax revenue in 2017, when t = 7 (because t is measured in 
years after 2010), 
 

( ) 079.12)7(3.0)7(260)7(3.0)7(26003.0))7(( 22
≈+++++=pR million dollars 

 
 
Domain of Compositions 

 
When we think about the domain of a composition ( ) ( ( ))h x f g x= , we must consider 

both the domain of the inner function and the domain of the composition itself.  While it 
is tempting to only look at the resulting composite function, if the inner function were 
undefined at a value of x, the composition would not be possible. 
 
 
Example 12 

Let 
2

1
( )

1
f x

x
=

−
 and ( ) 2g x x= − .  Find the domain of ( )( )f g x . 

 
Since we want to avoid the square root of negative numbers, the domain of ( )g x  is the 

set of values where 2 0x − ≥ .  The domain is 2x ≥ . 
 

The composition is ( )
( )

2

1 1 1
( )

( 2) 1 32 1
f g x

x xx

= = =
− − −− −

.   

The composition is undefined when x = 3, so that value must also be excluded from the 
domain.  Notice that the composition doesn't involve a square root, but we still have to 
consider the domain limitation from the inside function. 
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Combining the two restrictions, the domain is all values of x greater than or equal to 2, 
except x = 3.   
 

In inequalities, the domain is:  2 3 or 3x x≤ < > . 

In interval notation, the domain is:  [ ) ( )2,3 3,∪ ∞ . 

 
 

Try it Now 

7. Let 
2

1
)(

−
=

x
xf  and 

x
xg

1
)( = . Find the domain of ( )( )f g x . 

 
 
Decomposing Functions 

 
In some cases, it is desirable to decompose a function – to write it as a composition of 
two simpler functions. 
 
 
Example 13 

Write 
253)( xxf −+=  as the composition of two functions. 

 
We are looking for two functions, g and h, so ))(()( xhgxf = .  To do this, we look for a 

function inside a function in the formula for f(x).  As one possibility, we might notice 

that 25 x−  is the inside of the square root.  We could then decompose the function as: 
25)( xxh −=  

xxg += 3)(  

 
We can check our answer by recomposing the functions: 

( ) 22 535))(( xxgxhg −+=−=  

 
Note that this is not the only solution to the problem.  Another non-trivial 

decomposition would be 2)( xxh =  and xxg −+= 53)(  
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Important Topics of this Section 

Definition of Composition of Functions 

Compositions using:  

  Words  

  Tables  

  Graphs  

  Equations  

Domain of Compositions 

Decomposition of Functions 

 
 

Try it Now Answers 
1. The final cost, C, depends on the clearance price, p, which is based on the original 

discount, d.  (Or the original discount d, determines the clearance price and the final 
cost is half of the clearance price.) 
 

2. ( (1)) (3) 3f g f= =   and      ( (3)) (3) 2g f g= =   

 
3. ( (2)) (5) 3g f g= =  

 
4. ( ( 2)) (6) 20h f h− = =   did you remember to insert your input values using parentheses? 

 

5. ( 2) 3( 2) ( 2)g t t t− = − − −    

 

6. ( ) ( ) ( )
3

( ( )) 3f g x f x x x= = +  

( ) ( )3 3( ( )) 3 3g f x g x x x x= + = +  

 

7. 
x

xg
1

)( =  is undefined at x = 0. 

The composition, ( )
1 1 1 1

( )
1 1 2 1 2 1 2

2

x
f g x f

x xx x

x x x x

 
= = = = =  − −  − −

 is undefined 

when 021 =− x , when 
2

1
=x .   

Restricting these two values, the domain is ( )
1 1

,0 0, ,
2 2

   
−∞ ∪ ∪ ∞   

   
. 
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Section 1.4 Exercises 

 

Given each pair of functions, calculate ( )( )0f g  and ( )( )0g f . 

1. ( ) 4 8f x x= + , ( ) 27g x x= −   2. ( ) 5 7f x x= + , ( ) 24 2g x x= −  

3. ( ) 4f x x= + , ( ) 312g x x= −   4. ( )
1

2
f x

x
=

+
, ( ) 4 3g x x= +  

 
Use the table of values to evaluate each expression 
5. ( (8))f g      

6. ( )( )5f g   

7. ( (5))g f    

8. ( )( )3g f   

9. ( (4))f f     

10. ( )( )1f f   

11. ( (2))g g   

12. ( )( )6g g   

Use the graphs to evaluate the expressions below.  
13. ( (3))f g   

14. ( )( )1f g   

15. ( (1))g f     

16. ( )( )0g f   

17. ( (5))f f     

18. ( )( )4f f    

19. ( (2))g g   

20. ( )( )0g g   

For each pair of functions, find ( )( )f g x  and ( )( )g f x .  Simplify your answers. 

21. ( )
1

6
f x

x
=

−
, ( )

7
6 g x

x
= +   22. ( )

1

4
f x

x
=

−
, ( )

2
4g x

x
= +  

23. ( ) 2 1f x x= + , ( ) 2g x x= +   24. ( ) 2f x x= + , ( ) 2 3g x x= +   

25. ( )f x x= , ( ) 5 1g x x= +    26. ( ) 3f x x=  , ( ) 3

1x
g x

x

+
=  

x  ( )f x  ( )g x  

0 7 9 

1 6 5 

2 5 6 

3 8 2 

4 4 1 

5 0 8 

6 2 7 

7 1 3 

8 9 4 

9 3 0 
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27. If  ( ) 4 6f x x= + ,  ( )  6 g x x= − and ( )  h x x= , find  ( ( ( )))f g h x   

 

28. If  ( ) 2 1f x x= + , ( )
1

g x
x

=  and ( )  3h x x= +  , find  ( ( ( )))f g h x   

 
29. The function ( )D p  gives the number of items that will be demanded when the price 

is p. The production cost, ( )C x  is the cost of producing x items. To determine the 

cost of production when the price is $6, you would do which of the following: 
a. Evaluate ( (6))D C    b. Evaluate ( (6))C D    

c. Solve ( ( ))  6D C x =     d. Solve ( ( ))  6C D p =  

 
30. The function ( )A d  gives the pain level on a scale of 0-10 experienced by a patient 

with d milligrams of a pain reduction drug in their system.  The milligrams of drug in 
the patient’s system after t minutes is modeled by ( )m t .  To determine when the 

patient will be at a pain level of 4, you would need to: 

a. Evaluate ( )( )4A m    b. Evaluate ( )( )4m A    

c. Solve ( )( )  4A m t =     d. Solve ( )( )  4m A d =  

 
31. The radius r, in inches, of a spherical balloon is related to the volume, V, by 

3
3

( )
4

V
r V

π
= .  Air is pumped into the balloon, so the volume after t seconds is given 

by ( ) 10 20V t t= + . 

a. Find the composite function  ( )( )r V t  

b. Find the radius after 20 seconds 
 
32. The number of bacteria in a refrigerated food product is given by 

( ) 223 56 1  N T T T= − + , 3 33T< < ,  where T is the temperature of the food. When the 

food is removed from the refrigerator, the temperature is given by ( ) 5 1.5T t t= + , 

where t is the time in hours. 

a. Find the composite function  ( )( )N T t  

b. Find the bacteria count after 4 hours  
 

33. Given ( )
x

xp
1

=  and ( ) 2 4m x x= − , find the domain of ( ( )) m p x . 

34. Given ( )
1

p x
x

=  and ( ) 29 xxm −= , find the domain of ( ( )) m p x . 

35. Given ( )
3

1

+
=

x
xf  and ( )

1

2

−
=

x
xg , find the domain of ( )( )f g x . 
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36. Given ( )
1+

=
x

x
xf  and ( )

x
xg

4
= , find the domain of ( )( )f g x . 

37. Given ( ) 2−= xxf  and ( )
3

2
2

−
=

x
xg , find the domain of ( )( )xfg . 

38. Given ( ) xxf −= 4  and ( )
2

1
2

−
=

x
xg , find the domain of ( )( )xfg . 

 
Find functions ( )f x  and ( )g x  so the given function can be expressed as

( ) ( )( )h x f g x= . 

39. ( ) ( )
2

2h x x= +     40. ( ) ( )
3

5h x x= −  

41. ( )
3

5
h x

x
=

−
    42. ( )

( )
2

4

2
h x

x
=

+
 

43. ( ) 3 2h x x= + −     44. ( ) 34h x x= +   

45. Let ( )f x  be a linear function, with form ( )f x ax b= +  for constants a and b.  [UW] 

a. Show that ( )( )f f x  is a linear function  

b. Find a function ( )g x  such that ( )( ) 6 8g g x x= −  

46. Let ( ) 3
2

1
+= xxf   [UW] 

a. Sketch the graphs of ( ) ( )( ) ( )( )( ), , f x f f x f f f x  on the interval −2 ≤ x ≤ 10. 

b. Your graphs should all intersect at the point (6, 6). The value x = 6 is called a 

fixed point of the function f(x)since (6) 6f = ; that is, 6 is fixed - it doesn’t move 

when f is applied to it. Give an explanation for why 6 is a fixed point for any 

function ( ( (... ( )...)))f f f f x . 

c. Linear functions (with the exception of ( )f x x= ) can have at most one fixed 

point. Quadratic functions can have at most two. Find the fixed points of the 

function ( ) 2 2g x x= − . 

d. Give a quadratic function whose fixed points are x = −2 and x = 3. 
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47.  A car leaves Seattle heading east. The speed of the car in mph after m minutes is 

given by the function ( )
2

2

70

10

m
C m

m
=

+
.   [UW] 

a. Find a function ( )m f s=  that converts seconds s into minutes m. Write out the 

formula for the new function ( ( ))C f s ; what does this function calculate? 

b. Find a function (m g h= ) that converts hours h into minutes m. Write out the 

formula for the new function ( ( ))C g h ; what does this function calculate? 

c. Find a function ( )z v s=  that converts mph s into ft/sec z. Write out the formula 

for the new function ( ( )v C m ; what does this function calculate? 
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Section 1.5 Transformation of Functions 

 
Often when given a problem, we try to model the scenario using mathematics in the form 
of words, tables, graphs and equations in order to explain or solve it. When building 
models, it is often helpful to build off of existing formulas or models.  Knowing the basic 
graphs of your tool-kit functions can help you solve problems by being able to model 
new behavior by adapting something you already know.  Unfortunately, the models and 
existing formulas we know are not always exactly the same as the ones presented in the 
problems we face. 
 
Fortunately, there are systematic ways to shift, stretch, compress, flip and combine 
functions to help them become better models for the problems we are trying to solve.  We 
can transform what we already know into what we need, hence the name, 
“Transformation of functions.” When we have a story problem, formula, graph, or table, 
we can then transform that function in a variety of ways to form new functions. 
 
Shifts 

 

Example 1 

To regulate temperature in a green building, air flow vents near the roof open and close 
throughout the day to allow warm air to escape.  The graph below shows the open vents 
V (in square feet) throughout the day, t in hours after midnight.  During the summer, the 
facilities staff decides to try to better regulate temperature by increasing the amount of 
open vents by 20 square feet throughout the day.  Sketch a graph of this new function. 
 

 
 
We can sketch a graph of this new function by 
adding 20 to each of the output values of the 
original function.  This will have the effect of 
shifting the graph up. 
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Notice that in the second graph, for each input value, the output value has increased by 
twenty, so if we call the new function S(t), we could write ( ) ( ) 20S t V t= + .   

 
Note that this notation tells us that for any value of t, S(t) can be found by evaluating the 
V function at the same input, then adding twenty to the result.  
This defines S as a transformation of the function V, in this case a vertical shift up 20 
units.   
 
Notice that with a vertical shift the input values stay the same and only the output 
values change. 

 
 

Vertical Shift 

Given a function f(x), if we define a new function g(x) as  

( ) ( )g x f x k= + , where k is a constant 

then g(x) is a vertical shift of the function f(x), where all the output values have been 
increased by k.   

If k is positive, then the graph will shift up 

If k is negative, then the graph will shift down 

 
 
Example 2 

A function f(x) is given as a table below.  Create a table for the function ( ) ( ) 3g x f x= −  

 
 
 
 
The formula ( ) ( ) 3g x f x= −  tells us that we can find the output values of the g function 

by subtracting 3 from the output values of the f function.  For example, 
(2) 1f =    is found from the given table 

( ) ( ) 3g x f x= −    is our given transformation 

(2) (2) 3 1 3 2g f= − = − = −   

 
Subtracting 3 from each f(x) value, we can complete a table of values for g(x) 
 
 
 

 
 
As with the earlier vertical shift, notice the input values stay the same and only the output 
values change. 
 

 

x 2 4 6 8 

f(x) 1 3 7 11 

 

x 2 4 6 8 

g(x) -2 0 4 8 
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Try it Now 

1. The function 2( ) 4.9 30h t t t= − +  gives the height h of a ball (in meters) thrown 

upwards from the ground after t seconds.  Suppose the ball was instead thrown from 
the top of a 10 meter building.  Relate this new height function b(t) to h(t), then find a 
formula for b(t). 

 
 
The vertical shift is a change to the output, or outside, of the function.  We will now look 
at how changes to input, on the inside of the function, change its graph and meaning. 
 
 
Example 3 

Returning to our building air flow example from the beginning of the section, suppose 
that in Fall, the facilities staff decides that the original venting plan starts too late, and 
they want to move the entire venting program to start two hours earlier.  Sketch a graph 
of the new function. 
 

      
    V(t) = the original venting plan                        F(t) = starting 2 hours sooner 
           

In the new graph, which we can call F(t), at each time, the air flow is the same as the 
original function V(t) was two hours later.  For example, in the original function V, the 
air flow starts to change at 8am, while for the function F(t) the air flow starts to change 
at 6am.  The comparable function values are (8) (6)V F= . 

 
Notice also that the vents first opened to 220 sq. ft. at 10 a.m. under the original plan, 
while under the new plan the vents reach 220 sq. ft. at 8 a.m., so (10) (8)V F= . 

 
In both cases we see that since F(t) starts 2 hours sooner, the same output values are 
reached when, ( ) ( 2)F t V t= +  

 
Note that ( 2)V t +  had the effect of shifting the graph to the left. 
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Horizontal changes or “inside changes” affect the domain of a function (the input) instead 
of the range and often seem counterintuitive.  The new function F(t) uses the same 
outputs as V(t), but matches those outputs to inputs two hours earlier than those of V(t).  
Said another way, we must add 2 hours to the input of V to find the corresponding output 
for F:  ( ) ( 2)F t V t= + . 

 
 

Horizontal Shift 

Given a function f(x), if we define a new function g(x) as  

( ) ( )g x f x k= + , where k is a constant 

then g(x) is a horizontal shift of the function f(x) 

If k is positive, then the graph will shift left 

If k is negative, then the graph will shift right 

 
 
Example 4 

A function f(x) is given as a table below.  Create a table for the function ( ) ( 3)g x f x= −  

 
 
 
 
The formula ( ) ( 3)g x f x= −  tells us that the output values of g are the same as the 

output value of f with an input value three smaller.  For example, we know that (2) 1f = .  

To get the same output from the g function, we will need an input value that is 3 larger: 
We input a value that is three larger for g(x) because the function takes three away 
before evaluating the function f. 
 

(5) (5 3) (2) 1g f f= − = =  

 
 
 
 
The result is that the function g(x) has been shifted to the right by 3. Notice the output 
values for g(x) remain the same as the output values for f(x) in the chart, but the 
corresponding input values, x, have shifted to the right by 3:  2 shifted to 5, 4 shifted to 
7, 6 shifted to 9 and 8 shifted to 11.   

 
 
 
 
 
 
 
Example 5 

x 2 4 6 8 

f(x) 1 3 7 11 

 

x 5 7 9 11 

g(x) 1 3 7 11 
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The graph shown is a transformation of the toolkit function 
2( )f x x= .  Relate this new function g(x) to f(x), and then 

find a formula for g(x). 
 
Notice that the graph looks almost identical in shape to the 

2( )f x x=  function, but the x values are shifted to the right 

two units.  The vertex used to be at (0, 0) but now the 
vertex is at (2, 0) .  The graph is the basic quadratic 
function shifted two to the right, so 

( ) ( 2)g x f x= −   

 
Notice how we must input the value x = 2, to get the output value y = 0;  the x values 
must be two units larger, because of the shift to the right by 2 units. 
 
We can then use the definition of the f(x) function to write a formula for g(x) by 
evaluating ( 2)f x − : 

Since 2( )f x x=  and  ( ) ( 2)g x f x= −  
2( ) ( 2) ( 2)g x f x x= − = −  

 
If you find yourself having trouble determining whether the shift is +2 or -2, it might 
help to consider a single point on the graph.  For a quadratic, looking at the bottom-
most point is convenient.  In the original function, (0) 0f = .  In our shifted function, 

(2) 0g = .  To obtain the output value of 0 from the f function, we need to decide 

whether a +2 or -2 will work to satisfy (2) (2 ? 2) (0) 0g f f= = = .  For this to work, we 

will need to subtract 2 from our input values. 
 
When thinking about horizontal and vertical shifts, it is good to keep in mind that vertical 
shifts are affecting the output values of the function, while horizontal shifts are affecting 
the input values of the function. 
 
 
Example 6 

The function G(m) gives the number of gallons of gas required to drive m miles.  
Interpret ( ) 10G m +  and ( 10)G m + . 

 
( ) 10G m +  is adding 10 to the output, gallons.  This is 10 gallons of gas more than is 

required to drive m miles. So, this is the gas required to drive m miles, plus another 10 
gallons of gas. 
 

( 10)G m +  is adding 10 to the input, miles.  This is the number of gallons of gas 

required to drive 10 miles more than m miles. 
 
 



Section 1.5 Transformation of Functions 69

Try it Now 

2. Given the function xxf =)(   graph the original function )(xf and the 

transformation )2()( += xfxg . 

a. Is this a horizontal or a vertical change? 
b. Which way is the graph shifted and by how many units? 
c. Graph f(x) and g(x) on the same axes. 

 
 
Now that we have two transformations, we can combine them together. 
 
Remember: 
Vertical Shifts are outside changes that affect the output (vertical) axis values shifting the 
transformed function up or down.  
 
Horizontal Shifts are inside changes that affect the input (horizontal) axis values shifting 
the transformed function left or right. 
 
 
Example 7 

Given ( )f x x= , sketch a graph of ( ) ( 1) 3h x f x= + − . 

 
The function f  is our toolkit absolute value function.  We know that this graph has a V 
shape, with the point at the origin.  The graph of h has transformed f  in two ways:  

( 1)f x +  is a change on the inside of the function, giving a horizontal shift left by 1, 

then the subtraction by 3 in ( 1) 3f x + −  is a change to the outside of the function, giving 

a vertical shift down by 3.  Transforming the graph gives  

 

 

We could also find a formula for this transformation by evaluating the expression for 
h(x): 

( ) ( 1) 3

( ) 1 3

h x f x

h x x

= + −

= + −
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Example 8 

Write a formula for the graph shown, a transformation 
of the toolkit square root function. 
 
The graph of the toolkit function starts at the origin, so 
this graph has been shifted 1 to the right, and up 2.  In 
function notation, we could write that as 

( ) ( 1) 2h x f x= − + .  Using the formula for the square 

root function we can write 

( ) 1 2h x x= − +  

 
Note that this transformation has changed the domain 
and range of the function.  This new graph has domain 
[1, )∞  and range [2, )∞ . 

 
 
Reflections 
 
Another transformation that can be applied to a function is a reflection over the horizontal 
or vertical axis.   
 
 
Example 9 

Reflect the graph of ( )s t t=  both vertically and horizontally. 

 
Reflecting the graph vertically, each output value will be reflected over the horizontal t 
axis: 

            

 

Since each output value is the opposite of the original output value, we can write 
( ) ( )V t s t= −  

( )V t t= −  

 
Notice this is an outside change or vertical change that affects the output s(t) values so 
the negative sign belongs outside of the function. 
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Reflecting horizontally, each input value will be reflected over the vertical axis. 
 

Since each input value is the opposite of the original input 
value, we can write 

( ) ( )H t s t= −  

( )H t t= −  

 
Notice this is an inside change or horizontal change that 
affects the input values so the negative sign is on the inside 
of the function. 
 
Note that these transformations can affect the domain and 
range of the functions.  While the original square root function has domain [0, )∞  and 

range [0, )∞ , the vertical reflection gives the V(t) function the range ( , 0]−∞ , and the 

horizontal reflection gives the H(t) function the domain ( , 0]−∞ . 

 

 

Reflections 

Given a function f(x), if we define a new function g(x) as  

( ) ( )g x f x= − ,  

then g(x) is a vertical reflection of the function f(x), sometimes called a reflection 
about the x-axis 

 

If we define a new function g(x) as  

( ) ( )g x f x= − ,  

then g(x) is a horizontal reflection of the function f(x), sometimes called a reflection 
about the y-axis 

 
 
Example 10 

A function f(x) is given as a table below.  Create a table for the function ( ) ( )g x f x= −  

and ( ) ( )h x f x= −  

 
 
 
 
For g(x), this is a vertical reflection, so the x values stay the same and each output value 
will be the opposite of the original output value  
 
For h(x), this is a horizontal reflection, and each input value will be the opposite of the 
original input value and the h(x) values stay the same as the f(x) values: 
 
 

x 2 4 6 8 

f(x) 1 3 7 11 

 

x -2 -4 -6 -8 

h(x) 1 3 7 11 
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Example 11 

A common model for learning has an equation similar 

to ( ) 2 1t
k t

−
= − + , where k is the percentage of mastery 

that can be achieved after t practice sessions.  This is a 

transformation of the function ( ) 2t
f t =  shown here.  

Sketch a graph of k(t). 
 
This equation combines three transformations into one 
equation.   

A horizontal reflection:   ( ) 2 t
f t

−
− =     combined with 

A vertical reflection:  ( ) 2 t
f t

−
− − = −   combined with 

A vertical shift up 1:  ( ) 1 2 1t
f t

−
− − + = − +  

 
We can sketch a graph by applying these transformations one at a time to the original 
function: 
The original graph  Horizontally reflected  Then vertically reflected 

      

 
Then, after shifting up 1, we get the final graph. 
   

( ) ( ) 1 2 1t
k t f t

−
= − − + = − + . 

 

Note:  As a model for learning, this function would 

be limited to a domain of 0t ≥ , with corresponding 
range [0,1) . 

 
 
 
 

 
 

Try it Now 

3.  Given the toolkit function 2( )f x x= , graph g(x) = −f(x)  and h(x) = f(−x). 

Do you notice anything surprising?   
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Some functions exhibit symmetry, in which reflections result in the original graph.  For 

example, reflecting the toolkit functions 2( )f x x=  or ( )f x x=  about the y-axis will 

result in the original graph.  We call these types of graphs symmetric about the y-axis. 
 

Likewise, if the graphs of 3( )f x x=  or 
1

( )f x
x

=  were reflected over both axes, the 

result would be the original graph: 
 

3( )f x x=    ( )f x−      ( )f x− −  

 
 
We call these graphs symmetric about the origin. 
 

 

Even and Odd Functions 

A function is called an even function if 

( ) ( )f x f x= −  

The graph of an even function is symmetric about the vertical axis 

 

A function is called an odd function if 

( ) ( )f x f x= − −  

The graph of an odd function is symmetric about the origin 

 
 
Note:  A function can be neither even nor odd if it does not exhibit either symmetry.  For 

example, the ( ) 2x
f x =  function is neither even nor odd. 

 
 
Example 12 

Is the function 3( ) 2f x x x= +  even, odd, or neither? 

 
Without looking at a graph, we can determine this by finding formulas for the 
reflections, and seeing if they return us to the original function: 
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3 3( ) ( ) 2( ) 2f x x x x x− = − + − = − −  

This does not return us to the original function, so this function is not even.   
 
We can now try also applying a horizontal reflection: 

( )3 3( ) 2 2f x x x x x− − = − − − = +  

 
Since ( ) ( )f x f x− − = , this is an odd function. 

 
 

Stretches and Compressions 
 
With shifts, we saw the effect of adding or subtracting to the inputs or outputs of a 
function.  We now explore the effects of multiplying the inputs or outputs. 
 
Remember, we can transform the inside (input values) of a function or we can transform 
the outside (output values) of a function. Each change has a specific effect that can be 
seen graphically. 
 
 
Example 13 

A function P(t) models the growth of a population of 
fruit flies.  The growth is shown in the graph.  A 
scientist is comparing this to another population, Q, that 
grows the same way, but starts twice as large.  Sketch a 
graph of this population. 
 
Since the population is always twice as large, the new 
population’s output values are always twice the original 
function output values.  Graphically, this would look 
like the second graph shown. 
 
Symbolically, )(2)( tPtQ =  

 
This means that for any input t, the value of the Q 
function is twice the value of the P function.   Notice the 
effect on the graph is a vertical stretching of the graph, 
where every point doubles its distance from the 
horizontal axis. The input values, t, stay the same while 
the output values are twice as large as before. 
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Vertical Stretch/Compression 

Given a function f(x), if we define a new function g(x) as  

)()( xkfxg = , where k is a constant 

then g(x) is a vertical stretch or compression of the function f(x). 

 

If k > 1, then the graph will be stretched 

If 0< k < 1, then the graph will be compressed 

If k < 0, then there will be combination of a vertical stretch or compression with a 
vertical reflection 

 
 
Example 14 

A function f(x) is given as a table below.  Create a table for the function )(
2

1
)( xfxg =  

 
 
 

The formula )(
2

1
)( xfxg =  tells us that the output values of g are half of the output 

values of f with the same inputs.  For example, we know that 3)4( =f .  Then 

2

3
)3(

2

1
)4(

2

1
)4( === fg  

 
 
 
 
The result is that the function g(x) has been compressed vertically by ½.  Each output 
value has been cut in half, so the graph would now be half the original height. 

 
 
Example  15 

The graph shown is a transformation of the toolkit 

function 3)( xxf = .  Relate this new function g(x) to 

f(x), then find a formula for g(x). 
 
When trying to determine a vertical stretch or shift, it 
is helpful to look for a point on the graph that is 
relatively clear.  In this graph, it appears that 2)2( =g .  

With the basic cubic function at the same input, 

82)2( 3
==f .   

x 2 4 6 8 

f(x) 1 3 7 11 

 

x 2 4 6 8 

g(x) 1/2 3/2 7/2 11/2 
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Based on that, it appears that the outputs of g are ¼ the outputs of the function f, since 

)2(
4

1
)2( fg = .   

 
From this we can fairly safely conclude that: 

)(
4

1
)( xfxg =  

 
We can write a formula for g by using the definition of the function f

3

4

1
)(

4

1
)( xxfxg ==  

 
 
Now we consider changes to the inside of a function. 
 
 
Example 16 

Returning to the fruit fly population we looked at earlier, suppose the scientist is now 
comparing it to a population that progresses through its lifespan twice as fast as the 
original population.  In other words, this new population, R, will progress in 1 hour the 
same amount the original population did in 2 hours, and in 2 hours, will progress as 
much as the original population did in 4 hours.  Sketch a graph of this population. 
 
Symbolically, we could write 

)2()1( PR =  

)4()2( PR = , and in general, 

)2()( tPtR =  

 
Graphing this, 
 
     Original population, P(t)   Transformed, R(t) 

         
 

Note the effect on the graph is a horizontal compression, where all input values are half 
their original distance from the vertical axis.  
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Horizontal Stretch/Compression 

Given a function f(x), if we define a new function g(x) as  

)()( kxfxg = , where k is a constant 

then g(x) is a horizontal stretch or compression of the function f(x). 

 

If k > 1, then the graph will be compressed by 
k

1  

If 0< k < 1, then the graph will be stretched by 
k

1  

If k < 0, then there will be combination of a horizontal stretch or compression with a 
horizontal reflection. 

 
 
Example 17 

A function f(x) is given as a table below.  Create a table for the function 







= xfxg

2

1
)(  

 
 
 
 

The formula 







= xfxg

2

1
)(  tells us that the output values for g are the same as the 

output values for the function f at an input half the size.  Notice that we don’t have 

enough information to determine )2(g since )1(2
2

1
)2( ffg =








⋅= , and we do not 

have a value for )1(f  in our table.  Our input values to g will need to be twice as large 

to get inputs for f that we can evaluate.  For example, we can determine )4(g since 

1)2(4
2

1
)4( ==








⋅= ffg .    

 
 
 
 
Since each input value has been doubled, the result is that the function g(x) has been 
stretched horizontally by 2.   

 
 
 
 
 
 
 
 

x 2 4 6 8 

f(x) 1 3 7 11 

 

x 4 8 12 16 

g(x) 1 3 7 11 
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Example 18 

Two graphs are shown below.  Relate the function g(x) to f(x). 
 

      
 
The graph of g(x) looks like the graph of f(x) horizontally compressed. Since f(x) ends at 
(6,4) and g(x) ends at (2,4) we can see that the x values have been compressed by 1/3, 

because 6(1/3) = 2. We might also notice that ( )6)2( fg = , and ( )3)1( fg = .  Either 

way, we can describe this relationship as ( )xfxg 3)( = .  This is a horizontal 

compression by 1/3. 
 

 

Notice that the coefficient needed for a horizontal stretch or compression is the 
reciprocal of the stretch or compression.  To stretch the graph horizontally by 4, we need 

a coefficient of 1/4 in our function: 
1

4
f x
 
 
 

.  This means the input values must be four 

times larger to produce the same result, requiring the input to be larger, causing the 
horizontal stretching. 
 
 

Try it Now 
4. Write a formula for the toolkit square root function horizontally stretched by three. 

 
 
It is useful to note that for most toolkit functions, a horizontal stretch or vertical stretch 
can be represented in other ways.  For example, a horizontal compression of the function 

( ) 2
f x x=  by ½ would result in a new function ( ) ( )

2
2g x x= , but this can also be written 

as ( ) 24g x x= , a vertical stretch of f(x) by 4.  When writing a formula for a transformed 

toolkit, we only need to find one transformation that would produce the graph. 
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Combining Transformations 
 
When combining transformations, it is very important to consider the order of the 
transformations.  For example, vertically shifting by 3 and then vertically stretching by 2 
does not create the same graph as vertically stretching by 2 then vertically shifting by 3.   
 
When we see an expression like 3)(2 +xf , which transformation should we start with?  

The answer here follows nicely from order of operations, for outside transformations.  
Given the output value of f(x), we first multiply by 2, causing the vertical stretch, then 
add 3, causing the vertical shift.  (Multiplication before Addition) 
 
 

Combining Vertical Transformations 

When combining vertical transformations written in the form kxaf +)( , 

first vertically stretch by a, then vertically shift by k. 

 
 
Horizontal transformations are a little trickier to think about.  When we write 

)32()( += xfxg for example, we have to think about how the inputs to the g function 

relate to the inputs to the f function.  Suppose we know 12)7( =f .  What input to g 

would produce that output?  In other words, what value of x will allow 

)12()32()( fxfxg =+= ?  We would need 1232 =+x .  To solve for x, we would first 

subtract 3, resulting in horizontal shift, then divide by 2, causing a horizontal 
compression.   
 
 

Combining Horizontal Transformations 

When combining horizontal transformations written in the form )( pbxf + , 

first horizontally shift by p, then horizontally stretch by 1/b. 

 
 
This format ends up being very difficult to work with, since it is usually much easier to 
horizontally stretch a graph before shifting.  We can work around this by factoring inside 
the function. 

)( pbxf + = 















+

b

p
xbf  

Factoring in this way allows us to horizontally stretch first, then shift horizontally. 
 
 

Combining Horizontal Transformations (Factored Form) 

When combining horizontal transformations written in the form ))(( hxbf + , 

first horizontally stretch by 1/b, then horizontally shift by h. 
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Independence of Horizontal and Vertical Transformations 

Horizontal and vertical transformations are independent.  It does not matter 
whether horizontal or vertical transformations are done first. 

 
 
Example 19 

Given the table of values for the function f(x) below, create a table of values for the 
function 1)3(2)( += xfxg  

 
 
 
 
There are 3 steps to this transformation and we will work from the inside out.  Starting 
with the horizontal transformations, )3( xf  is a horizontal compression by 1/3, which 

means we multiply each x value by 1/3. 
 
 
 
 
Looking now to the vertical transformations, we start with the vertical stretch, which 
will multiply the output values by 2.  We apply this to the previous transformation. 
 
 
 
 
Finally, we can apply the vertical shift, which will add 1 to all the output values. 
 
 
 

 
 
Example 20 

Using the graph of f(x) below, sketch a graph of  31
2

1
)( −








+= xfxk  

 

To make things simpler, we’ll start by factoring out 
the inside of the function 

3)2(
2

1
31

2

1
−







+=−








+ xfxf  

 
By factoring the inside, we can first horizontally 
stretch by 2, as indicated by the ½ on the inside of 
the function.  Remember twice the size of 0 is still 
0, so the point (0,2) remains at (0,2) while the point 
(2,0) will stretch to (4,0). 

x 6 12 18 24 

f(x) 10 14 15 17 

 

x 2 4 6 8 
)3( xf  10 14 15 17 

x 2 4 6 8 
)3(2 xf  20 28 30 34 

x 2 4 6 8 
1)3(2)( += xfxg  21 29 31 35 
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Next, we horizontally shift left by 2 units, as indicated by the x+2. 
 
Last, we vertically shift down by 3 to complete our sketch, as indicated by the -3 on the 
outside of the function. 
 
Horizontal stretch by 2 Horizontal shift left by 2  Vertical shift down 3 

   
 
 
Example 21 

Write an equation for the transformed graph of the quadratic function shown. 
 
Since this is a quadratic function, first consider what 
the basic quadratic tool kit function looks like and how 
this has changed.  Observing the graph, we notice 
several transformations: 
 
The original tool kit function has been flipped over the 
x axis, some kind of stretch or compression has 
occurred, and we can see a shift to the right 3 units and 
a shift up 1 unit. 
 
In total there are four operations: 
Vertical reflection, requiring a negative sign outside the function 
Vertical Stretch or Horizontal Compression* 
Horizontal Shift Right 3 units, which tells us to put x-3 on the inside of the function 
Vertical Shift up 1 unit, telling us to add 1 on the outside of the function 
 
* It is unclear from the graph whether it is showing a vertical stretch or a horizontal 
compression.  For the quadratic, it turns out we could represent it either way, so we’ll 
use a vertical stretch.  You may be able to determine the vertical stretch by observation. 
 
By observation, the basic tool kit function has a vertex at (0, 0) and symmetrical points 
at (1, 1) and (-1, 1).  These points are one unit up and one unit over from the vertex.  
The new points on the transformed graph are one unit away horizontally but 2 units 
away vertically.  They have been stretched vertically by two. 
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Not everyone can see this by simply looking at the graph.  If you can, great, but if not, 
we can solve for it.  First, we will write the equation for this graph, with an unknown 
vertical stretch. 
 

2)( xxf =     The original function 
2)( xxf −=−    Vertically reflected 

2)( axxaf −=−    Vertically stretched  
2)3()3( −−=−− xaxaf   Shifted right 3 

1)3(1)3( 2
+−−=+−− xaxaf  Shifted up 1 

 

We now know our graph is going to have an equation of the form 1)3()( 2
+−−= xaxg .  

To find the vertical stretch, we can identify any point on the graph (other than the 
highest point), such as the point (2,-1), which tells us 1)2( −=g .  Using our general 

formula, and substituting 2 for x, and -1 for g(x)  

a

a

a

a

=

−=−

+−=−

+−−=−

2

2

11

1)32(1 2

 

 
This tells us that to produce the graph we need a vertical stretch by two.   

The function that produces this graph is therefore 1)3(2)( 2
+−−= xxg . 

 
 

Try it Now 
5. Consider the linear function 12)( +−= xxg .  Describe its transformation in words 

using the identity tool kit function f(x) = x as a reference. 

 
 
Example 22 

On what interval(s) is the function 
( )

3
1

2
)(

2
+

−

−
=

x
xg  increasing and decreasing? 

 

This is a transformation of the toolkit reciprocal squared function, 
2

1
)(

x
xf = : 

2

2
)(2

x
xf

−
=−    A vertical flip and vertical stretch by 2 

( )2
1

2
)1(2

−

−
=−−

x
xf   A shift right by 1 

( )
3

1

2
3)1(2

2
+

−

−
=+−−

x
xf  A shift up by 3 
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The basic reciprocal squared function is increasing on 
)0,(−∞ and decreasing on ),0( ∞ .  Because of the vertical 

flip, the g(x) function will be decreasing on the left and 
increasing on the right.  The horizontal shift right by 1 will 
also shift these intervals to the right one.  From this, we can 
determine g(x) will be increasing on ),1( ∞  and decreasing 

on )1,(−∞ .  We also could graph the transformation to help 

us determine these intervals.  
 

 
 

Try it Now 

6.  On what interval(s) is the function 2)3()( 3
+−= tth  concave up and down? 

 
 
 

Important Topics of This Section 

Transformations 

Vertical Shift (up & down) 

Horizontal Shifts (left & right) 

Reflections over the vertical & horizontal axis 

Even & Odd functions 

Vertical Stretches & Compressions 

Horizontal Stretches & Compressions 

Combinations of Transformation 
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Try it Now Answers 

1. 2( ) ( ) 10 4.9 30 10b t h t t t= + = − + +   

 
2. a. Horizontal shift 
    b. The function is shifted to the LEFT by 2 units. 
    c. Shown to the right 
 
 
 
3. Shown to the right 
  Notice: g(x) = f(-x) looks the same as f(x) 
 

4. 







= xfxg

3

1
)(  so using the square root function we get 

1
( )

3
g x x=  

 
5.  The identity tool kit function f(x) = x  has been 

transformed in 3 steps 
      a.  Vertically stretched by 2.  
      b.  Vertically reflected over the x axis. 
      c.  Vertically shifted up by 1 unit.  
 
6. h(t) is concave down on )3,(−∞ and concave up on ),3( ∞  
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Section 1.5 Exercises 

 
Describe how each function is a transformation of the original function ( )f x  

1. ( )49f x −     2. ( 43)f x +  

3. ( 3)f x +     4. ( 4)f x −  

5. ( ) 5f x +     6. ( ) 8f x +  

7. ( ) 2f x −     8. ( ) 7f x −     

9. ( )2 3f x − +    10. ( )4 1f x + −   

 

11. Write a formula for ( )f x x=  shifted up 1 unit and left 2 units. 

12. Write a formula for ( )f x x=  shifted down 3 units and right 1 unit. 

13. Write a formula for 
1

( )f x
x

=  shifted down 4 units and right 3 units. 

14. Write a formula for 
2

1
 ( )f x

x
=  shifted up 2 units and left 4 units. 

 
15. Tables of values for  ( )f x , ( )g x , and ( )h x  are given below.   Write ( )g x  and ( )h x  

as transformations of ( )f x . 

x f(x)  x g(x)  x h(x) 

-2 -2  -1 -2  -2 -1 

-1 -1  0 -1  -1 0 

0 -3  1 -3  0 -2 

1 1  2 1  1 2 

2 2  3 2  2 3 

 
16. Tables of values for  ( )f x , ( )g x , and ( )h x  are given below.   Write ( )g x  and ( )h x  

as transformations of ( )f x . 

x f(x)  x g(x)  x h(x) 

-2 -1  -3 -1  -2 -2 

-1 -3  -2 -3  -1 -4 

0 4  -1 4  0 3 

1 2  0 2  1 1 

2 1  1 1  2 0 
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The graph of ( ) 2x
f x =  is shown.  Sketch a graph of each 

transformation of ( )f x . 

17. ( ) 2 1x
g x = +  

18. ( ) 2 3x
h x = −  

19. ( ) 12x
w x

−
=  

20. ( ) 32x
q x

+
=  

 
Sketch a graph of each function as a transformation of a toolkit function. 

21. ( ) 2( 1) 3f t t= + −  

22. ( ) 1 4h x x= − +  

23. ( ) ( )
3

2 1k x x= − −  

24. ( ) 3 2m t t= + +  

 Write an equation for each function graphed below. 

25.   26.  

27.   28.  
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Find a formula for each of the transformations of the square root whose graphs are given 
below.  

29.   30.  
  
  

The graph of ( ) 2x
f x =  is shown.  Sketch a graph of each 

transformation of ( )f x   

31. ( ) 2 1x
g x = − +  

32. ( ) 2 x
h x

−
=  

 

33. Starting with the graph of  ( )  6x
f x =  write the equation of 

the graph that results from  
a. reflecting ( )f x  about the x-axis and the y-axis 

b. reflecting ( )f x  about the x-axis, shifting left 2 units, and down 3 units 

  

34. Starting with the graph of  ( )  4x
f x =  write the equation of the graph that results from  

a. reflecting ( )f x  about the x-axis 

b. reflecting ( )f x  about the y-axis, shifting right 4 units, and up 2 units 

 
Write an equation for each function graphed below. 

 

35.   36.  
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37.   38.   
 
39. For each equation below, determine if the function is Odd, Even, or Neither. 

a. ( ) 43 f x x=   

b. ( )g x x=   

c. ( )
1

3 h x x
x

= +   

  
40. For each equation below, determine if the function is Odd, Even, or Neither. 

a. ( ) ( )
2

2f x x= −   

b. ( ) 42 g x x=   

c. ( ) 32 h x x x= −   

  
Describe how each function is a transformation of the original function ( )f x . 

41. ( )f x−     42. ( )f x−   

43. 4 ( )f x      44. 6 ( )f x  

45. (5 )f x     46. (2 )f x  

47. 
1

3
f x
 
 
 

    48. 
1

5
f x
 
 
 

 

49. ( )3 f x−     50. (3 )f x−   

 
Write a formula for the function that results when the given toolkit function is 
transformed as described. 

51. ( )f x x=  reflected over the y axis and horizontally compressed by a factor of 
1

4
. 

 

52. ( )f x x=  reflected over the x axis and horizontally stretched by a factor of 2. 

 

53. 
2

1
( )f x

x
=  vertically compressed by a factor of 

1

3
, then shifted to the left 2 units and 

down 3 units. 
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54. 
1

( )f x
x

=  vertically stretched by a factor of 8, then shifted to the right 4 units and up 

2 units. 
 

55. 2( )f x x=  horizontally compressed by a factor of 
1

2
, then shifted to the right 5 units 

and up 1 unit. 
 

56. 2( )f x x=  horizontally stretched by a factor of 3, then shifted to the left 4 units and 

down 3 units. 
 

Describe how each formula is a transformation of a toolkit function.  Then sketch a graph 
of the transformation. 
 

57. ( ) ( )
2

4 1 5f x x= + −    58. ( )
2

( ) 5 3 2g x x= + −  

 

59. ( ) 2 4 3h x x= − − +    60. ( ) 3 1k x x= − −  

 

61. ( ) 31

2
m x x=      62. ( )

1
2

3
n x x= −  

 

63. ( )
2

1
3

3
p x x

 
= − 
 

    64. ( )
3

1
1

4
q x x

 
= + 
 

  

 

65. ( ) 4a x x= − +     66. ( ) 3 6−−= xxb  

 
 

Determine the interval(s) on which the function is increasing and decreasing. 
 

67. ( ) ( )
2

4 1 5f x x= + −    68. ( )
2

( ) 5 3 2g x x= + −  

 

69. ( ) 4a x x= − +     70. ( ) 3 1k x x= − −  

 
Determine the interval(s) on which the function is concave up and concave down. 

 

71. ( ) 1)3(2 3
++−= xxm    72. ( ) 3 6b x x= − −  

 

73. ( )
2

1
3

3
p x x

 
= − 
 

    74. ( ) 3 1k x x= − −  
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The function ( )f x  is graphed here.  Write an equation for each 

graph below as a transformation of ( )f x . 

 
 
 
 
 

75. 76. 77.  
 

78. 79. 80.  
 

81. 82. 83.  

84. 85. 86.  
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Write an equation for each transformed toolkit function graphed below. 
 

87. 88. 89.  

90. 91. 92.

93. 94. 95.  

96. 97. 98.   
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Write a formula for the piecewise function graphed below. 

99.  100.  
 

101.  102.  
 
 
103. Suppose you have a function   ( )y f x=  such that the domain of ( )f x  is 1 ≤ x ≤ 6 and 

the range of ( )f x  is −3 ≤ y ≤ 5.  [UW] 

a. What is the domain of  (2( 3)) f x − ? 

b. What is the range of ))3(2( −xf  ? 

c. What is the domain of 2 ( ) 3f x −  ? 

d. What is the range of 2 ( ) 3f x −  ? 

e. Can you find constants B and C so that the domain of ( ( ))f B x C−  is 8 ≤ x ≤ 9? 

f. Can you find constants A and D so that the range of ( )  Af x D+  is 0 ≤ y ≤ 1? 
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Section 3.1 Power Functions & Polynomial Functions 
A square is cut out of cardboard, with each side having length L.  If we wanted to write a 
function for the area of the square, with L as the input and the area as output, you may 
recall that the area of a rectangle can be found by multiplying the length times the width.  
Since our shape is a square, the length & the width are the same, giving the formula: 

2)( LLLLA 

Likewise, if we wanted a function for the volume of a cube with each side having some 
length L, you may recall volume of a rectangular box can be found by multiplying length 
by width by height, which are all equal for a cube, giving the formula: 

3)( LLLLLV   

These two functions are examples of power functions, functions that are some power of 
the variable. 

Power Function 

A power function is a function that can be represented in the form 
pxxf )(  

Where the base is a variable and the exponent, p, is a number. 

Example 1 
Which of our toolkit functions are power functions? 

The constant and identity functions are power functions, since they can be written as 
0)( xxf   and 1)( xxf   respectively. 
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The quadratic and cubic functions are both power functions with whole number powers: 
2)( xxf   and 3)( xxf  . 

 
The reciprocal and reciprocal squared functions are both power functions with negative 
whole number powers since they can be written as 1)(  xxf and 2)(  xxf . 
 
The square and cube root functions are both power functions with fractional powers 
since they can be written as 21)( xxf  or 31)( xxf  . 

 
 

Try it Now 
1. What point(s) do the toolkit power functions have in common? 

 
 
Characteristics of Power Functions 
 
Shown to the right are the graphs of 

642 )(and,)(,)( xxfxxfxxf  , all even whole number 
powers.  Notice that all these graphs have a fairly similar 
shape, very similar to the quadratic toolkit, but as the power 
increases the graphs flatten somewhat near the origin, and 
become steeper away from the origin. 
 
To describe the behavior as numbers become larger and 
larger, we use the idea of infinity.  The symbol for positive infinity is , and   for 
negative infinity.  When we say that “x approaches infinity”, which can be symbolically 
written as x , we are describing a behavior – we are saying that x is getting large in 
the positive direction.   
 
With the even power functions, as the x becomes large in either the positive or negative 
direction, the output values become very large positive numbers.  Equivalently, we could 
describe this by saying that as x approaches positive or negative infinity, the f(x) values 
approach positive infinity.  In symbolic form, we could write: as x , )(xf . 
 
Shown here are the graphs of 

753 )(and,)(,)( xxfxxfxxf  , all odd whole number 
powers.  Notice all these graphs look similar to the cubic 
toolkit, but again as the power increases the graphs flatten 
near the origin and become steeper away from the origin. 
 
For these odd power functions, as x approaches negative 
infinity, f(x) approaches negative infinity.  As x approaches 
positive infinity, f(x) approaches positive infinity.  In 
symbolic form we write:  as x , )(xf  and as x , )(xf . 
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Long Run Behavior 

The behavior of the graph of a function as the input takes on large negative values,
x , and large positive values, x , is referred to as the long run behavior of 

the function. 
 
 
Example 2 

Describe the long run behavior of the graph of 8)( xxf  . 
 
Since 8)( xxf   has a whole, even power, we would expect this function to behave 
somewhat like the quadratic function.  As the input gets large positive or negative, we 
would expect the output to grow without bound in the positive direction.  In symbolic 
form, as x , )(xf .  

 
 
Example 3 

Describe the long run behavior of the graph of 9)( xxf   
 
Since this function has a whole odd power, we would expect it to behave somewhat like 
the cubic function.  The negative in front of the 9x  will cause a vertical reflection, so as 
the inputs grow large positive, the outputs will grow large in the negative direction, and 
as the inputs grow large negative, the outputs will grow large in the positive direction.  
In symbolic form, for the long run behavior we would write: as x , )(xf
and as x , )(xf . 
 
You may use words or symbols to describe the long run behavior of these functions. 

 
 

Try it Now 
2. Describe in words and symbols the long run behavior of 4)( xxf   

 
 
Treatment of the rational and radical forms of power functions will be saved for later. 
 
 
Polynomials 
 
An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular 
shape.  The slick is currently 24 miles in radius, but that radius is increasing by 8 miles 
each week.   If we wanted to write a formula for the area covered by the oil slick, we 
could do so by composing two functions together.  The first is a formula for the radius, r, 
of the spill, which depends on the number of weeks, w, that have passed.   
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Hopefully you recognized that this relationship is linear:   
wwr 824)(   

 
We can combine this with the formula for the area, A, of a circle:  

2)( rrA   
 
Composing these functions gives a formula for the area in terms of weeks: 

2)824()824())(()( wwAwrAwA    
 
Multiplying this out gives the formula 

264384576)( wwwA    
 
This formula is an example of a polynomial.  A polynomial is simply the sum of terms 
each consisting of a transformed power function with positive whole number power. 
 
 

Terminology of Polynomial Functions 

A polynomial is function that can be written as n
n xaxaxaaxf  2

210)(  

 

Each of the ai constants are called coefficients and can be positive, negative, or zero, 
and be whole numbers, decimals, or fractions. 

 

A term of the polynomial is any one piece of the sum, that is any i
i xa . Each 

individual term is a transformed power function. 

 

The degree of the polynomial is the highest power of the variable that occurs in the 
polynomial. 

 

The leading term is the term containing the highest power of the variable: the term 
with the highest degree.  

 

The leading coefficient is the coefficient of the leading term. 

 

Because of the definition of the “leading” term we often rearrange polynomials so that 
the powers are descending. 

01
2

2.....)( axaxaxaxf n
n   
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Example 4 
Identify the degree, leading term, and leading coefficient of these polynomials: 
 
a) 32 423)( xxxf   b) ttttg 725)( 35   c) 26)( 3  ppph  
 
a) For the function f(x), the degree is 3, the highest power on x.  The leading term is the 
term containing that power, 34x .  The leading coefficient is the coefficient of that 
term, -4. 
 
b) For g(t), the degree is 5, the leading term is 55t , and the leading coefficient is 5. 
 
c) For h(p), the degree is 3, the leading term is 3p , so the leading coefficient is -1. 

 
 

Long Run Behavior of Polynomials 

For any polynomial, the long run behavior of the polynomial will match the long run 
behavior of the leading term. 

 
 
Example 5 

What can we determine about the long run behavior and 
degree of the equation for the polynomial graphed here? 
 
Since the output grows large and positive as the inputs 
grow large and positive, we describe the long run 
behavior symbolically by writing: as x , 

)(xf .  Similarly, as x , )(xf . 
 
In words, we could say that as x values approach 
infinity, the function values approach infinity, and as x 
values approach negative infinity the function values 
approach negative infinity. 
 
We can tell this graph has the shape of an odd degree power function which has not 
been reflected, so the degree of the polynomial creating this graph must be odd, and the 
leading coefficient would be positive. 

 
 

Try it Now 
3. Given the function )5)(1)(2(2.0)(  xxxxf use your algebra skills to write the 

function in standard polynomial form (as a sum of terms) and determine the leading 
term, degree, and long run behavior of the function.  
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Short Run Behavior 
 
Characteristics of the graph such as vertical and horizontal intercepts and the places the 
graph changes direction are part of the short run behavior of the polynomial.   
 
Like with all functions, the vertical intercept is where the graph crosses the vertical axis, 
and occurs when the input value is zero.  Since a polynomial is a function, there can only 
be one vertical intercept, which occurs at the point ),0( 0a .  The horizontal intercepts 

occur at the input values that correspond with an output value of zero.  It is possible to 
have more than one horizontal intercept. 
 
Horizontal intercepts are also called zeros, or roots of the function. 
 
 
Example 6 

Given the polynomial function )4)(1)(2()(  xxxxf , written in factored form for 
your convenience, determine the vertical and horizontal intercepts.   
 
The vertical intercept occurs when the input is zero.   

8)40)(10)(20()0( f .   
 
The graph crosses the vertical axis at the point (0, 8). 
 
The horizontal intercepts occur when the output is zero. 

)4)(1)(2(0  xxx  when x = 2, -1, or 4. 
f(x) has zeros, or roots, at x = 2, -1, and 4. 
 
The graph crosses the horizontal axis at the points (2, 0), (-1, 0), and (4, 0) 

 
 
Notice that the polynomial in the previous example, which would be degree three if 
multiplied out, had three horizontal intercepts and two turning points – places where the 
graph changes direction.  We will now make a general statement without justifying it – 
the reasons will become clear later in this chapter. 
 
 

Intercepts and Turning Points of Polynomials 

A polynomial of degree n will have: 

At most n horizontal intercepts.  An odd degree polynomial will always have at least 
one. 

At most n−1 turning points 
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Example 7 
What can we conclude about the graph of the 
polynomial shown here? 
 
Based on the long run behavior, with the graph 
becoming large positive on both ends of the graph, we 
can determine that this is the graph of an even degree 
polynomial.  The graph has 2 horizontal intercepts, 
suggesting a degree of 2 or greater, and 3 turning points, 
suggesting a degree of 4 or greater.  Based on this, it 
would be reasonable to conclude that the degree is even 
and at least 4, so it is probably a fourth degree 
polynomial. 

 
 

Try it Now 
4. Given the function )5)(1)(2(2.0)(  xxxxf , determine the short run behavior. 

 
 

Important Topics of this Section 

Power Functions 

Polynomials 

Coefficients 

Leading coefficient 

Term 

Leading Term 

Degree of a polynomial  

Long run behavior 

Short run behavior 
 
 

Try it Now Answers 
1. (0, 0) and (1, 1) are common to all power functions. 
2. As x approaches positive and negative infinity, f(x) approaches negative infinity:  as 

x , )(xf  because of the vertical flip. 

3. The leading term is 32.0 x , so it is a degree 3 polynomial. 
As x approaches infinity (or gets very large in the positive direction) f(x) approaches 
infinity; as x approaches negative infinity (or gets very large in the negative direction) 
f(x) approaches negative infinity.  (Basically the long run behavior is the same as the 
cubic function). 

4. Horizontal intercepts are (2, 0) (-1, 0) and (5, 0), the vertical intercept is (0, 2) and 
there are 2 turns in the graph. 
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Section 3.1 Exercises 
 
Find the long run behavior of each function as x   and x   

1.   4f x x   2.   6f x x    3.   3f x x   4.   5f x x  

5.   2f x x    6.   4f x x    7.   7f x x    8.   9f x x   

 
Find the degree and leading coefficient of each polynomial 
9. 74x       10. 65x    
11. 25 x      12. 36 3 4x x   
13. 4 22  3  1 x x x          14. 5 4 26 2   3x x x    

15.   2 3 4 (3 1)x x x      16.   3 1 1 (4 3)x x x     

 
Find the long run behavior of each function as x   and x   
17. 4 22  3  1 x x x          18. 5 4 26 2   3x x x    
19. 23  2x x       20. 3 22  3x x x     
 
21. What is the maximum number of x-intercepts and turning points for a polynomial of 
degree 5?  
 
22. What is the maximum number of x-intercepts and turning points for a polynomial of 
degree 8?  
 
What is the least possible degree of the polynomial function shown in each graph? 

23. 24. 25. 26.  

27. 28. 29. 30.  
 
Find the vertical and horizontal intercepts of each function. 

31.     2 1 2 ( 3)f t t t t      32.     3 1 4 ( 5)f x x x x     

33.    2 3 1 (2 1)g n n n      34.    3 4 (4 3)k u n n       
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Section 3.3 Graphs of Polynomial Functions 
 
In the previous section, we explored the short run behavior of quadratics, a special case 
of polynomials.  In this section, we will explore the short run behavior of polynomials in 
general. 
 
Short run Behavior:  Intercepts 
 
As with any function, the vertical intercept can be found by evaluating the function at an 
input of zero.  Since this is evaluation, it is relatively easy to do it for a polynomial of any 
degree. 
 
To find horizontal intercepts, we need to solve for when the output will be zero.  For 
general polynomials, this can be a challenging prospect.  While quadratics can be solved 
using the relatively simple quadratic formula, the corresponding formulas for cubic and 
4th degree polynomials are not simple enough to remember, and formulas do not exist for 
general higher-degree polynomials.  Consequently, we will limit ourselves to three cases: 

1) The polynomial can be factored using known methods: greatest common 
factor and trinomial factoring.   

2) The polynomial is given in factored form. 
3) Technology is used to determine the intercepts. 

 
Other techniques for finding the intercepts of general polynomials will be explored in the 
next section. 
 
 
Example 1 

Find the horizontal intercepts of 246 23)( xxxxf  . 
 
We can attempt to factor this polynomial to find solutions for f(x) = 0. 

023 246  xxx   Factoring out the greatest common factor 
  023 242  xxx   Factoring the inside as a quadratic in x2 

   021 222  xxx  Then break apart to find solutions 

0

02




x

x  or 

 

1

1

01
2

2






x

x

x

 or  

 

2

2

02
2

2







x

x

x

 

 
This gives us 5 horizontal intercepts. 
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Example 2 

Find the vertical and horizontal intercepts of )32()2()( 2  tttg  
 
The vertical intercept can be found by evaluating g(0).   

12)3)0(2()20()0( 2 g  
 
The horizontal intercepts can be found by solving g(t) = 0 

0)32()2( 2  tt    Since this is already factored, we can break it apart: 

2

02

0)2( 2






t

t

t

 or 

2

3

0)32(






t

t
 

 
We can always check our answers are reasonable by graphing the polynomial. 

 
 
Example 3 

Find the horizontal intercepts of 64)( 23  tttth  
 
Since this polynomial is not in factored form, has no 
common factors, and does not appear to be factorable 
using techniques we know, we can turn to technology to 
find the intercepts.   
 
Graphing this function, it appears there are horizontal 
intercepts at t = -3, -2, and 1. 
 
We could check these are correct by plugging in these 
values for t and verifying that ( 3) ( 2) (1) 0h h h     . 

 
 

Try it Now 
1. Find the vertical and horizontal intercepts of the function 24 4)( tttf  . 

 
 
Graphical Behavior at Intercepts 
 
If we graph the function 32 )1()2)(3()(  xxxxf , 
notice that the behavior at each of the horizontal 
intercepts is different. 
 
At the horizontal intercept x = -3, coming from the 

)3( x  factor of the polynomial, the graph passes 
directly through the horizontal intercept.   
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The factor )3( x  is linear (has a power of 1), so the behavior near the intercept is like 
that of a line - it passes directly through the intercept. We call this a single zero, since the 
zero corresponds to a single factor of the function. 
 
At the horizontal intercept x = 2, coming from the 2)2( x  factor of the polynomial, the 
graph touches the axis at the intercept and changes direction.  The factor is quadratic 
(degree 2), so the behavior near the intercept is like that of a quadratic – it bounces off 
the horizontal axis at the intercept.  Since )2)(2()2( 2  xxx , the factor is repeated 
twice, so we call this a double zero. We could also say the zero has multiplicity 2. 
 
At the horizontal intercept x = -1, coming from the 3)1( x  factor of the polynomial, the 
graph passes through the axis at the intercept, but flattens out a bit first.  This factor is 
cubic (degree 3), so the behavior near the intercept is like that of a cubic, with the same 
“S” type shape near the intercept that the toolkit 3x  has. We call this a triple zero. We 
could also say the zero has multiplicity 3.  
 
By utilizing these behaviors, we can sketch a reasonable graph of a factored polynomial 
function without needing technology. 
 
 

Graphical Behavior of Polynomials at Horizontal Intercepts 

If a polynomial contains a factor of the form phx )(  , the behavior near the horizontal 
intercept h is determined by the power on the factor. 

 p = 1    p = 2    p = 3  

   
 Single zero      Double zero          Triple zero  

  Multiplicity 1      Multiplicity 2         Multiplicity 3 

 

For higher even powers 4,6,8 etc.… the graph will still bounce off the horizontal axis 
but the graph will appear flatter with each increasing even power as it approaches and 
leaves the axis. 

 

For higher odd powers, 5,7,9 etc… the graph will still pass through the horizontal axis 
but the graph will appear flatter with each increasing odd power as it approaches and 
leaves the axis. 
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Example 4 

Sketch a graph of )5()3(2)( 2  xxxf . 
 
This graph has two horizontal intercepts.  At x = -3, the factor is squared, indicating the 
graph will bounce at this horizontal intercept.  At x = 5, the factor is not squared, 
indicating the graph will pass through the axis at this intercept. 
 
Additionally, we can see the leading term, if this polynomial were multiplied out, would 
be 32x , so the long-run behavior is that of a vertically reflected cubic, with the 
outputs decreasing as the inputs get large positive, and the inputs increasing as the 
inputs get large negative. 
 
To sketch this we consider the following: 
As x  the function )(xf  so we know the graph starts in the 2nd quadrant 
and is decreasing toward the horizontal axis. 
 
At (-3, 0) the graph bounces off the horizontal axis and so the function must start 
increasing. 
 
At (0, 90) the graph crosses the vertical axis at the vertical intercept. 
 
Somewhere after this point, the graph must turn back down or start decreasing toward 
the horizontal axis since the graph passes through the next intercept at (5,0). 
 
As x  the function )(xf  so we know the 
graph continues to decrease and we can stop drawing 
the graph in the 4th quadrant. 
 
Using technology we can verify the shape of the 
graph. 
 
 
 
 

  
 

Try it Now 
2. Given the function xxxxg 6)( 23   use the methods that we have learned so far to 

find the vertical & horizontal intercepts, determine where the function is negative and 
positive, describe the long run behavior and sketch the graph without technology. 
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Solving Polynomial Inequalities 
 
One application of our ability to find intercepts and sketch a graph of polynomials is the 
ability to solve polynomial inequalities.  It is a very common question to ask when a 
function will be positive and negative.  We can solve polynomial inequalities by either 
utilizing the graph, or by using test values. 
 
 
 
Example 5 

Solve 0)4()1)(3( 2  xxx  
 
As with all inequalities, we start by solving the equality 0)4()1)(3( 2  xxx , 
which has solutions at x = -3, -1, and 4.  We know the function can only change from 
positive to negative at these values, so these divide the inputs into 4 intervals.   
 
We could choose a test value in each interval and evaluate the function 

)4()1)(3()( 2  xxxxf  at each test value to determine if the function is positive or 
negative in that interval 
 

 
 
On a number line this would look like: 
 

 
 
From our test values, we can determine this function is positive when x < -3 or x > 4, or 
in interval notation, ),4()3,(   

 
 
We could have also determined on which intervals the function was positive by sketching 
a graph of the function.  We illustrate that technique in the next example 
 
 
 
 
 
 
 

Interval Test x in interval f( test value) >0 or <0? 
x < -3 -4 72 > 0 
-3 < x < -1 -2 -6 < 0 
-1 < x < 4 0 -12 < 0 
x > 4 5 288 > 0 

0 0 0 positive negative negative positive 
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Example 6 

Find the domain of the function 256)( tttv  . 
 
A square root is only defined when the quantity we are taking the square root of, the 
quantity inside the square root, is zero or greater.  Thus, the domain of this function will 
be when 056 2  tt . 
 
We start by solving the equality 056 2  tt .  While we could use the quadratic 
formula, this equation factors nicely to 0)1)(6(  tt , giving horizontal intercepts t = 
1 and t = -6.   
 
 
 
Sketching a graph of this quadratic will allow us to 
determine when it is positive. 
 
From the graph we can see this function is positive 
for inputs between the intercepts.  So 056 2  tt  
for 16  t , and this will be the domain of the v(t) 
function. 

 
 
 
Writing Equations using Intercepts 
 
Since a polynomial function written in factored form will have a horizontal intercept 
where each factor is equal to zero, we can form a function that will pass through a set of 
horizontal intercepts by introducing a corresponding set of factors. 
 
 

Factored Form of Polynomials 

If a polynomial has horizontal intercepts at nxxxx ,,, 21  , then the polynomial can 

be written in the factored form 
np

n
pp xxxxxxaxf )()()()( 21

21    

where the powers pi on each factor can be determined by the behavior of the graph at 
the corresponding intercept, and the stretch factor a can be determined given a value 
of the function other than the horizontal intercept. 
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Example 7  
Write a formula for the polynomial function 
graphed here. 
 
 
This graph has three horizontal intercepts: x = -3, 
2, and 5.  At x = -3 and 5 the graph passes through 
the axis, suggesting the corresponding factors of 
the polynomial will be linear.  At x = 2 the graph 
bounces at the intercept, suggesting the 
corresponding factor of the polynomial will be 2nd 
degree (quadratic).   
 
Together, this gives us: 

)5()2)(3()( 2  xxxaxf  
 
To determine the stretch factor, we can utilize another point on the graph.  Here, the 
vertical intercept appears to be (0,-2), so we can plug in those values to solve for a: 

30

1

602

)50()20)(30(2 2






a

a

a

 

 
The graphed polynomial appears to represent the function 

)5()2)(3(
30

1
)( 2  xxxxf . 

 
 

Try it Now 
3. Given the graph, write a formula for the function shown. 
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Estimating Extrema 
 
With quadratics, we were able to algebraically find the maximum or minimum value of 
the function by finding the vertex.  For general polynomials, finding these turning points 
is not possible without more advanced techniques from calculus.  Even then, finding 
where extrema occur can still be algebraically challenging.  For now, we will estimate the 
locations of turning points using technology to generate a graph. 
 
 
Example 8 

An open-top box is to be constructed by cutting out squares from each corner of a 14cm 
by 20cm sheet of plastic then folding up the sides.  Find the size of squares that should 
be cut out to maximize the volume enclosed by the box. 
 
We will start this problem by drawing a picture, labeling the 
width of the cut-out squares with a variable, w.       
 
Notice that after a square is cut out from each end, it leaves a 

)214( w cm by )2120( w cm rectangle for the base of the 
box, and the box will be w cm tall.  This gives the volume: 

32 468280)220)(214()( wwwwwwwV   
 
Using technology to sketch a graph allows us to estimate the maximum value for the 
volume, restricted to reasonable values for w: values from 0 to 7. 
 

 
 
From this graph, we can estimate the maximum value is around 340, and occurs when 
the squares are about 2.75cm square.  To improve this estimate, we could use advanced 
features of our technology, if available, or simply change our window to zoom in on our 
graph. 

w 

w 
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From this zoomed-in view, we can refine our estimate for the max volume to about 339, 
when the squares are 2.7cm square. 

 
 

Try it Now 
4. Use technology to find the maximum and minimum values on the interval [-1, 4] of the 

function )4()1()2(2.0)( 23  xxxxf .  

 
 

Important Topics of this Section 

Short Run Behavior 

 Intercepts (Horizontal & Vertical) 

Methods to find Horizontal intercepts 

 Factoring Methods 

 Factored Forms 

 Technology 

Graphical Behavior at intercepts 

Single, Double and Triple zeros (or multiplicity 1, 2, and 3 behaviors) 

Solving polynomial inequalities using test values & graphing techniques 

Writing equations using intercepts 

Estimating extrema 
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Try it Now Answers 
1.  Vertical intercept (0, 0).  24 40 tt   factors as     2240 222  ttttt  

Horizontal intercepts (0, 0), (-2, 0), (2, 0) 
 
2. Vertical intercept (0, 0),  

Horizontal intercepts (-2, 0), (0, 0), (3, 0) 
    The function is negative on (  , -2) and (0, 3) 
    The function is positive on (-2, 0) and (3, ) 
    The leading term is 3x so as x , )(xg and as

x , )(xg  
 
3. Double zero at x=-1, triple zero at x=2. Single zero at x=4. 

)4()1()2()( 23  xxxaxf .  Substituting (0,-4) and solving for a,  

3 21
( ) ( 2) ( 1) ( 4)

8
f x x x x      

 
4.  The minimum occurs at approximately the point (0, -6.5), and the maximum occurs at 

approximately the point (3.5, 7). 
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Section 3.3 Exercises 
 
Find the C and t intercepts of each function. 
1.     2 4 1 ( 6)C t t t t      2.     3 2 3 ( 5)C t t t t      

3.    2
4 2 ( 1)C t t t t      4.     2

2 3 1C t t t t    

5.   4 3 22 8 6C t t t t      6.   4 3 24 12 40C t t t t    

 
Use your calculator or other graphing technology to solve graphically for the zeros of the 
function. 
7.   3 27 4 30f x x x x       8.   3 26 28g x x x x      

 
Find the long run behavior of each function as t and t  

9.      3 3
3 5 3 ( 2)h t t t t      10.      2 3

2 3 1 ( 2)k t t t t     

11.     2
2 1 3p t t t t       12.     3

4 2 1q t t t t     

 
Sketch a graph of each equation. 

13.    2
3 ( 2)f x x x      14.     2

4 1g x x x    

15.      3 2
1 3h x x x      16.      3 2

3 2k x x x    

17.    2 1 ( 3)m x x x x       18.    3 2 ( 4)n x x x x       

 
Solve each inequality. 

19.   2
3 2 0x x     20.   2

5 1 0x x    

21.    1 2 3 0x x x       22.    4 3 6 0x x x       

 
Find the domain of each function. 

23.   242 19 2f x x x       24.   228 17 3g x x x    

25.   24 5h x x x      26.   22 7 3k x x x    

27.     2
3 2n x x x      28.    2

1 ( 3)m x x x    

29.   2

1

2 8
p t

t t


 
    30.   2

4

4 5
q t

x x
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Write an equation for a polynomial the given features. 
31. Degree 3.  Zeros at x = -2, x = 1, and x = 3.  Vertical intercept at (0, -4) 

32. Degree 3.  Zeros at x = -5, x = -2, and x = 1.  Vertical intercept at (0, 6) 

33. Degree 5.  Roots of multiplicity 2 at x = 3 and x = 1, and a root of multiplicity 1 at     
x = -3.  Vertical intercept at (0, 9) 

34. Degree 4.  Root of multiplicity 2 at x = 4, and a roots of multiplicity 1 at x = 1 and     
x = -2.  Vertical intercept at (0, -3) 

35. Degree 5.  Double zero at x = 1, and triple zero at x = 3.  Passes through the point    
(2, 15) 

36. Degree 5.  Single zero at x = -2 and x = 3, and triple zero at x = 1.  Passes through the 
point (2, 4) 

 
Write a formula for each polynomial function graphed. 

37.  38.  39.  
 

40.  41.  42.   
 

43.  44.  
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Write a formula for each polynomial function graphed. 
 

45.   46.  
 

47.   48.  
 

49.   50.  
 
51. A rectangle is inscribed with its base on the x axis and its upper corners on the 

parabola 25y x  .  What are the dimensions of such a rectangle that has the greatest 

possible area? 
 

52. A rectangle is inscribed with its base on the x axis and its upper corners on the curve 
416y x  .  What are the dimensions of such a rectangle that has the greatest 

possible area?
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Section 3.4 Factor Theorem and Remainder Theorem 
 
In the last section, we limited ourselves to finding the intercepts, or zeros, of polynomials 
that factored simply, or we turned to technology.  In this section, we will look at 
algebraic techniques for finding the zeros of polynomials like 64)( 23  tttth . 
 
Long Division 
 
In the last section we saw that we could write a polynomial as a product of factors, each 
corresponding to a horizontal intercept.  If we knew that x = 2 was an intercept of the 
polynomial 1454 23  xxx , we might guess that the polynomial could be factored as 

)something)(2(1454 23  xxxx .   To find that "something," we can use 
polynomial division. 
 
 
Example 1 

Divide 1454 23  xxx  by 2x  
 
Start by writing the problem out in long division form 

14542 23  xxxx    

 
Now we divide the leading terms: 23 xxx  .  It is best to align it above the same-
powered term in the dividend.  Now, multiply that 2x  by 2x  and write the result 
below the dividend. 
 

2

23

23

2

14542

x

xx

xxxx



   Now subtract that expression from the dividend. 

 

 

2

2

23

23

1456

2

14542

x

xx

xx

xxxx





    

 
Again, divide the leading term of the remainder by the leading term of the divisor.  

xxx 66 2  .  We add this to the result, multiply 6x by 2x , and subtract. 
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xx

x

xx

xx

xx

xxxx

6

147

126

1456

2

14542

2

2

2

23

23











   Repeat the process one last time. 

 

 

 

 

76

0

147

147

126

1456

2

14542

2

2

2

23

23













xx

x

x

xx

xx

xx

xxxx  

 
This tells us 1454 23  xxx  divided by 2x  is 762  xx , with a remainder of 
zero.  This also means that we can factor 1454 23  xxx  as   762 2  xxx . 

 
 
This gives us a way to find the intercepts of this polynomial. 
 
 
Example 2 

Find the horizontal intercepts of  1454)( 23  xxxxh . 
 
To find the horizontal intercepts, we need to solve h(x) = 0.  From the previous 
example, we know the function can be factored as   762)( 2  xxxxh .   
 

   0762)( 2  xxxxh  when x = 2 or when 0762  xx .  This doesn't factor 
nicely, but we could use the quadratic formula to find the remaining two zeros. 

23
)1(2

)7)(1(466 2




x . 

 

The horizontal intercepts will be at )0,2( ,  0,23 , and  0,23 . 
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Try it Now 
1. Divide 372 3  xx  by 3x  using long division. 

 
 
The Factor and Remainder Theorems 
 
When we divide a polynomial, p(x) by some divisor polynomial d(x), we will get a 
quotient polynomial q(x) and possibly a remainder r(x).  In other words,  

)()()()( xrxqxdxp  . 
 
Because of the division, the remainder will either be zero, or a polynomial of lower 
degree than d(x).  Because of this, if we divide a polynomial by a term of the form cx  , 
then the remainder will be zero or a constant.   
 
If rxqcxxp  )()()( , then rrrcqcccp  0)()()( , which establishes the 
Remainder Theorem. 
 
 

The Remainder Theorem 

If )(xp  is a polynomial of degree 1 or greater and c is a real number, then when p(x) 
is divided by cx  , the remainder is )(cp . 

 
 
If cx   is a factor of the polynomial p, then )()()( xqcxxp   for some polynomial q.  
Then 0)()()(  cqcccp , showing c is a zero of the polynomial.  This shouldn't 
surprise us - we already knew that if the polynomial factors it reveals the roots. 
 
If 0)( cp , then the remainder theorem tells us that if p is divided by cx  , then the 
remainder will be zero, which means cx   is a factor of p.  
 
 

The Factor Theorem 

If )(xp  is a nonzero polynomial, then the real number c is a zero of )(xp  if and only 
if cx   is a factor of )(xp . 

 
 
Synthetic Division 
 
Since dividing by cx   is a way to check if a number is a zero of the polynomial, it 
would be nice to have a faster way to divide by cx   than having to use long division 
every time.  Happily, quicker ways have been discovered. 
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Let's look back at the long division we did in Example 1 and try to streamline it. First, 
let's change all the subtractions into additions by distributing through the negatives. 
 

76

0

147

147

126

1456

2

14542

2

2

2

23

23













xx

x

x

xx

xx

xx

xxxx  

Next, observe that the terms 3x , 26x , and x7  are the exact opposite of the terms 
above them.  The algorithm we use ensures this is always the case, so we can omit them 
without losing any information. Also note that the terms we ‘bring down’ (namely the 
−5x and −14) aren’t really necessary to recopy, so we omit them, too. 
 

76

0

14

7

12

6

2

14542

2

2

2

23




xx

x

x

x

x

xxxx  

 
Now, let’s move things up a bit and, for reasons which will become clear in a moment, 
copy the 3x  into the last row. 
 

76

076

14122

14542

2

23

2

23



xx

xxx

xx

xxxx  

 
Note that by arranging things in this manner, each term in the last row is obtained by 
adding the two terms above it. Notice also that the quotient polynomial can be obtained 
by dividing each of the first three terms in the last row by x and adding the results. If you 
take the time to work back through the original division problem, you will find that this is 
exactly the way we determined the quotient polynomial.  
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This means that we no longer need to write the quotient polynomial down, nor the x in 
the divisor, to determine our answer. 
 

076

14122

14542

23

2

23

xxx

xx

xxxx   

 
We’ve streamlined things quite a bit so far, but we can still do more.  Let’s take a 
moment to remind ourselves where the 22x , 12x and 14 came from in the second row.  
Each of these terms was obtained by multiplying the terms in the quotient, 2x , 6x and 7, 
respectively, by the −2 in x − 2, then by −1 when we changed the subtraction to addition.  
Multiplying by −2 then by −1 is the same as multiplying by 2, so we replace the −2 in the 
divisor by 2.  Furthermore, the coefficients of the quotient polynomial match the 
coefficients of the first three terms in the last row, so we now take the plunge and write 
only the coefficients of the terms to get 
 

2 1 4 -5 -14 
  2 12 14 
 1 6 7 0 

 
We have constructed a synthetic division tableau for this polynomial division problem.  
Let’s re-work our division problem using this tableau to see how it greatly streamlines the 
division process.  To divide 1454 23  xxx  by 2x , we write 2 in the place of the 
divisor and the coefficients of 1454 23  xxx in for the dividend.  Then "bring down" 
the first coefficient of the dividend. 
 

 
Next, take the 2 from the divisor and multiply by the 1 that was "brought down" to get 2.  
Write this underneath the 4, then add to get 6. 
 

 
 
Now take the 2 from the divisor times the 6 to get 12, and add it to the −5 to get 7. 
 

 
 

2 1 4 -5 -14
↓ 2 12
1 6 7

2 1 4 -5 -14 
 ↓ 2 12  
 1 6  

2 1 4 -5 -14
↓ 2
1 6

2 1 4 -5 -14 
 ↓ 2  
 1   

2 1 4 -5 -14
↓
1

2 1 4 -5 -14 
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Finally, take the 2 in the divisor times the 7 to get 14, and add it to the −14 to get 0. 
 

 
 
The first three numbers in the last row of our tableau are the coefficients of the quotient 
polynomial.  Remember, we started with a third degree polynomial and divided by a first 
degree polynomial, so the quotient is a second degree polynomial. Hence the quotient is 

762  xx .  The number in the box is the remainder.  Synthetic division is our tool of 
choice for dividing polynomials by divisors of the form x − c.  It is important to note that 
it works only for these kinds of divisors.  Also take note that when a polynomial (of 
degree at least 1) is divided by x − c, the result will be a polynomial of exactly one less 
degree.  Finally, it is worth the time to trace each step in synthetic division back to its 
corresponding step in long division.   
 
 
Example 3 

Use synthetic division to divide 125 23  xx  by 3x . 
 
When setting up the synthetic division tableau, we need to enter 0 for the coefficient of 
x in the dividend.  Doing so gives 
 

 
 
Since the dividend was a third degree polynomial, the quotient is a quadratic 
polynomial with coefficients 5, 13 and 39.  Our quotient is 39135)( 2  xxxq  and 
the remainder is r(x) = 118.  This means 

118)39135)(3(125 223  xxxxx .   
 
It also means that 3x  is not a factor of 125 23  xx . 

 
 
Example 4 

Divide 83 x  by 2x  
 
For this division, we rewrite 2x  as  2x  and proceed as before. 

 

-2 1 0 0 8
 ↓ -2 4 -8
 1 -2 4 0

3 5 -2 0 1
 ↓ 15 39 117
 5 13 39 118

2 1 4 -5 -14
↓ 2 12 14
1 6 7 0

2 1 4 -5 -14
 ↓ 2 12 14
 1 6 7 
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The quotient is 422  xx  and the remainder is zero.  Since the remainder is zero, 
2x  is a factor of 83 x . 

 
 42)2(8 23  xxxx  

 
 

Try it Now 
2. Divide xxx 584 24   by 3x  using synthetic division. 

 
 
Using this process allows us to find the real zeros of polynomials, presuming we can 
figure out at least one root.  We'll explore how to do that in the next section. 
 
 
Example 5 

The polynomial 3121144)( 234  xxxxxp  has a horizontal intercept at 
2

1
x  

with multiplicity 2.  Find the other intercepts of p(x). 
 

Since 
2

1
x  is an intercept with multiplicity 2, then 

2

1
x  is a factor twice.  Use 

synthetic division to divide by 
2

1
x  twice. 

 

 

 
 

From the first division, we get  624
2

1
3121144 23234 






  xxxxxxxx  

The second division tells us 

 124
2

1

2

1
3121144 2234 






 





  xxxxxxx . 

 

To find the remaining intercepts, we set 0124 2 x  and get 3x . 
 

Note this also means   33
2

1

2

1
43121144 234 






 





  xxxxxxxx . 

1/2 4 -2 -1 -6 
 ↓ 2 0 -6 
 4 0 -12 0 

1/2 4 -4 -11 12 -3 
 ↓ 2 -1 -6 3 
 4 -2 -1 -6 0 
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Important Topics of this Section 

Long division of polynomials 

Remainder Theorem 

Factor Theorem 

Synthetic division of polynomials 
 
 

Try it Now Answers 
1. 

 

 

 

1162

30

3311

311

186

376

62

37023

2

2

2

23

23
















xx

x

x

xx

xx

xx

xxxx            The quotient is 1162 2  xx  with remainder -30. 

2.  

 
 

xxx 584 24   divided by 3x  is 7928124 23  xxx  with remainder 237 

3 4 0 -8 -5 0
 ↓ 12 36 84 237
 4 12 28 79 237
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Section 3.4 Exercises 
 
Use polynomial long division to perform the indicated division. 
 
1.   3)(134 2  xxx    2.    112 23  xxxx  

3.    41235 2234  xxxx   4.    17 2335  xxxxx  

5.    3259 3  xx     6.    1234 22  xxx  

 
Use synthetic division to perform the indicated division. 
 
7.    1123 2  xxx    8.    552  xx  

9.    1243 2  xxx    10.    3354 2  xxx  

11.    283  xx     12.    3324 3  xxx  

13.   





 

3

5
251518 2 xxx    14.   






 

2

1
14 2 xx  

15.   





 

2

1
122 23 xxxx   16.   






 

3

2
43 3 xxx  

17.   





 

2

1
132 3 xxx    18.   






 

2

3
91213124 234 xxxxx  

19.    396 24  xxx    20.    28126 246  xxxx  

 
Below you are given a polynomial and one of its zeros. Use the techniques in this section 
to find the rest of the real zeros and factor the polynomial. 
21. 1=6,116 23 cxxx     22. 8=512,19224 23 cxxx   

23. 
3

2
=2,43 23 cxxx     24. 

2

1
=6,1132 23 cxxx   

25. 2=6,32 23  cxxx    26. 
2

1
=5,102 23 cxxx   

27. 94261284 234  xxxx , 
2

1
=c  is a zero of multiplicity 2 

28. 123738122 2345  xxxxx , 1=c  is a zero of multiplicity 3 
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Section 4.1 Exponential Functions 

India is the second most populous country in the world, with a population in 2008 of 
about 1.14 billion people.  The population is growing by about 1.34% each year1.  We 
might ask if we can find a formula to model the population, P, as a function of time, t, in 
years after 2008, if the population continues to grow at this rate. 

In linear growth, we had a constant rate of change – a constant number that the output 
increased for each increase in input.  For example, in the equation 43)( += xxf , the 

slope tells us the output increases by three each time the input increases by one.  This 
population scenario is different – we have a percent rate of change rather than a constant 
number of people as our rate of change.   

To see the significance of this difference consider these two companies: 

Company A has 100 stores, and expands by opening 50 new stores a year 

Company B has 100 stores, and expands by increasing the number of stores by 50% of 
their total each year.  

Looking at a few years of growth for these companies: 

1 World Bank, World Development Indicators, as reported on http://www.google.com/publicdata, retrieved 
August 20, 2010 
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Year Stores, company A  Stores, company B 

0 100 Starting with  100 each 
 

100 

1 100 + 50 = 150 They both grow by 50 
stores in the first year. 
 

100 + 50% of 100 
100 + 0.50(100) = 150 

2 150 + 50 = 200 Store A grows by 50, 
Store B grows by 75 
 

150 + 50% of 150 
150 + 0.50(150) = 225 

3 200 + 50 = 250 Store A grows by 50, 
Store B grows by 112.5 
 

225 + 50% of 225 
225 + 0.50(225) = 337.5 

 
Notice that with the percent growth, each year the company is grows by 50% of the 
current year’s total, so as the company grows larger, the number of stores added in a year 
grows as well. 
 
To try to simplify the calculations, notice that after 1 year the number of stores for 
company B was: 

)100(50.0100 +   or equivalently by factoring  

150)50.01(100 =+  

  
We can think of this as “the new number of stores is the original 100% plus another 
50%”. 
 
After 2 years, the number of stores was: 

)150(50.0150 +  or equivalently by factoring 

)50.01(150 +  now recall the 150 came from 100(1+0.50).  Substituting that, 

225)50.01(100)50.01)(50.01(100 2
=+=++  

 
After 3 years, the number of stores was: 

)225(50.0225 +  or equivalently by factoring 

)50.01(225 +  now recall the 225 came from 2)50.01(100 + . Substituting that, 

5.337)50.01(100)50.01()50.01(100 32
=+=++  

 
From this, we can generalize, noticing that to show a 50% increase, each year we 
multiply by a factor of (1+0.50), so after n years, our equation would be 

nnB )50.01(100)( +=  

 
In this equation, the 100 represented the initial quantity, and the 0.50 was the percent 
growth rate.  Generalizing further, we arrive at the general form of exponential functions. 
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Exponential Function 

An exponential growth or decay function is a function that grows or shrinks at a 
constant percent growth rate.  The equation can be written in the form 

xraxf )1()( +=     or     xabxf =)(     where b = 1+r 

 

Where 

a is the initial or starting value of the function 

r is the percent growth or decay rate, written as a decimal 

b is the growth factor or growth multiplier.  Since powers of negative numbers behave 
strangely, we limit b to positive values. 

 
 
To see more clearly the difference between exponential and linear growth, compare the 
two tables and graphs below, which illustrate the growth of company A and B described 
above over a longer time frame if the growth patterns were to continue. 
         

years Company A Company B 

2 200 225 

4 300 506 

6 400 1139 

8 500 2563 

10 600 5767 

               
 
 
 
Example 1 

Write an exponential function for India’s population, and use it to predict the population 
in 2020. 
  
At the beginning of the chapter we were given India’s population of 1.14 billion in the 
year 2008 and a percent growth rate of 1.34%.  Using 2008 as our starting time (t = 0), 
our initial population will be 1.14 billion.  Since the percent growth rate was 1.34%, our 
value for r is 0.0134.   

Using the basic formula for exponential growth xraxf )1()( +=  we can write the 

formula,  ttf )0134.01(14.1)( +=  

 
To estimate the population in 2020, we evaluate the function at t = 12, since 2020 is 12 
years after 2008. 

337.1)0134.01(14.1)12( 12
≈+=f billion people in 2020 
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Try it Now 
1. Given the three statements below, identify which represent exponential functions. 
 
A. The cost of living allowance for state employees increases salaries by 3.1% each year. 
B. State employees can expect a $300 raise each year they work for the state. 
C. Tuition costs have increased by 2.8% each year for the last 3 years. 

 
 
Example 2 

A certificate of deposit (CD) is a type of savings account offered by banks, typically 
offering a higher interest rate in return for a fixed length of time you will leave your 
money invested.  If a bank offers a 24 month CD with an annual interest rate of 1.2% 
compounded monthly, how much will a $1000 investment grow to over those 24 
months? 
 
First, we must notice that the interest rate is an annual rate, but is compounded monthly, 
meaning interest is calculated and added to the account monthly.  To find the monthly 
interest rate, we divide the annual rate of 1.2% by 12 since there are 12 months in a 
year:  1.2%/12 = 0.1%.  Each month we will earn 0.1% interest.  From this, we can set 
up an exponential function, with our initial amount of $1000 and a growth rate of r = 
0.001, and our input m measured in months. 

m

mf 







+=

12

012.
11000)(   

mmf )001.01(1000)( +=  

After 24 months, the account will have grown to 24(24) 1000(1 0.001) $1024.28f = + =  

 
 

Try it Now 
2. Looking at these two equations that represent the balance in two different savings 

accounts, which account is growing faster, and which account will have a higher 
balance after 3 years? 

( )t
tA 05.11000)( =   ( )t

tB 075.1900)( =  

 
 
In all the preceding examples, we saw exponential growth.  Exponential functions can 
also be used to model quantities that are decreasing at a constant percent rate.  An 
example of this is radioactive decay, a process in which radioactive isotopes of certain 
atoms transform to an atom of a different type, causing a percentage decrease of the 
original material over time. 
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Example 3 

Bismuth-210 is an isotope that radioactively decays by about 13% each day, meaning 
13% of the remaining Bismuth-210 transforms into another atom (polonium-210 in this 
case) each day.  If you begin with 100 mg of Bismuth-210, how much remains after one 
week? 
 
With radioactive decay, instead of the quantity increasing at a percent rate, the quantity 
is decreasing at a percent rate.  Our initial quantity is a = 100 mg, and our growth rate 
will be negative 13%, since we are decreasing:  r = -0.13.  This gives the equation: 

dddQ )87.0(100)13.01(100)( =−=  

This can also be explained by recognizing that if 13% decays, then 87 % remains. 
 
After one week, 7 days, the quantity remaining would be 

73.37)87.0(100)7( 7
==Q mg of Bismuth-210 remains. 

 
 

Try it Now  
3.  A population of 1000 is decreasing 3% each year.  Find the population in 30 years. 

 
 
Example 4 

T(q) represents the total number of Android smart phone contracts, in thousands, held 
by a certain Verizon store region measured quarterly since January 1, 2016,  

Interpret all the parts of the equation 3056.231)64.1(86)2( 2
==T . 

 
Interpreting this from the basic exponential form, we know that 86 is our initial value. 
This means that on Jan. 1, 2016 this region had 86,000 Android smart phone contracts.  
Since b = 1 + r = 1.64, we know that every quarter the number of smart phone contracts 
grows by 64%.  T(2) = 231.3056 means that in the 2nd quarter (or at the end of the 
second quarter) there were approximately 231,306 Android smart phone contracts. 

 
 
Finding Equations of Exponential Functions 

 
In the previous examples, we were able to write equations for exponential functions since 
we knew the initial quantity and the growth rate.  If we do not know the growth rate, but 
instead know only some input and output pairs of values, we can still construct an 
exponential function. 
 
 
Example 5 

In 2009, 80 deer were reintroduced into a wildlife refuge area from which the 
population had previously been hunted to elimination.  By 2015, the population had 
grown to 180 deer.  If this population grows exponentially, find a formula for the 
function. 
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By defining our input variable to be t, years after 2009, the information listed can be 
written as two input-output pairs:  (0,80) and (6,180).  Notice that by choosing our input 
variable to be measured as years after the first year value provided, we have effectively 
“given” ourselves the initial value for the function:  a = 80.  This gives us an equation 
of the form  

tbtf 80)( = . 

 
Substituting in our second input-output pair allows us to solve for b: 

6180 80b=    Divide by 80 

6 180 9

80 4
b = =   Take the 6th root of both sides.   

6
9

1.1447
4

b = =    

 
This gives us our equation for the population: 

ttf )1447.1(80)( =  

 
Recall that since b = 1+r, we can interpret this to mean that the population growth rate 
is r = 0.1447, and so the population is growing by about 14.47% each year.   

 
 
In this example, you could also have used (9/4)^(1/6) to evaluate the 6th root if your 
calculator doesn’t have an nth root button. 
 

In the previous example, we chose to use the xabxf =)(  form of the exponential 

function rather than the xraxf )1()( +=  form.  This choice was entirely arbitrary – 

either form would be fine to use. 
 
When finding equations, the value for b or r will usually have to be rounded to be written 
easily.  To preserve accuracy, it is important to not over-round these values.  Typically, 
you want to be sure to preserve at least 3 significant digits in the growth rate.  For 
example, if your value for b was 1.00317643, you would want to round this no further 
than to 1.00318.   
 
In the previous example, we were able to “give” ourselves the initial value by clever 
definition of our input variable.  Next, we consider a situation where we can’t do this. 
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Example 6 

Find a formula for an exponential function passing through the points (-2,6) and (2,1). 
 
Since we don’t have the initial value, we will take a general approach that will work for 
any function form with unknown parameters:  we will substitute in both given input-

output pairs in the function form xabxf =)(  and solve for the unknown values, a and b. 

Substituting in (-2, 6) gives 26 −
= ab  

Substituting in (2, 1) gives 21 ab=  

 
We now solve these as a system of equations.  To do so, we could try a substitution 
approach, solving one equation for a variable, then substituting that expression into the 
second equation. 

Solving 26 −
= ab  for a: 

2

2

6
6a b

b
−

= =  

 

In the second equation, 21 ab= , we substitute the expression above for a: 

6389.0
6

1

6

1

61

)6(1

4

4

4

22

≈=

=

=

=

b

b

b

bb

 

 

Going back to the equation 26ba =  lets us find a: 

4492.2)6389.0(66 22
=== ba  

 

Putting this together gives the equation  x
xf )6389.0(4492.2)( =  

 
 

Try it Now 
4. Given the two points (1, 3) and (2, 4.5) find the equation of an exponential function 

that passes through these two points. 
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Example 7 

Find an equation for the exponential function 
graphed. 
 

The initial value for the function is not clear in this 
graph, so we will instead work using two clearer 
points.  There are three clear points: (-1, 1), (1, 2), 
and (3, 4).  As we saw in the last example, two 
points are sufficient to find the equation for a 
standard exponential, so we will use the latter two 
points.   
 

Substituting in (1,2) gives 12 ab=  

Substituting in (3,4) gives 34 ab=  

 

Solving the first equation for a gives 
b

a
2

= .   

 
Substituting this expression for a into the second equation: 

34 ab=  

b

b
b

b

3
3 22

4 ==   Simplify the right-hand side 

2

2

24

2

2

±=

=

=

b

b

b

 

 

Since we restrict ourselves to positive values of b, we will use 2=b .  We can then go 

back and find a: 

2
2

22
===

b
a  

 

This gives us a final equation of xxf )2(2)( = . 

 
 
Compound Interest 

 
In the bank certificate of deposit (CD) example earlier in the section, we encountered 
compound interest.  Typically bank accounts and other savings instruments in which 
earnings are reinvested, such as mutual funds and retirement accounts, utilize compound 
interest.  The term compounding comes from the behavior that interest is earned not on 
the original value, but on the accumulated value of the account. 
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In the example from earlier, the interest was compounded monthly, so we took the annual 
interest rate, usually called the nominal rate or annual percentage rate (APR) and 
divided by 12, the number of compounds in a year, to find the monthly interest.  The 
exponent was then measured in months.   
 
Generalizing this, we can form a general formula for compound interest.  If the APR is 
written in decimal form as r, and there are k compounding periods per year, then the 
interest per compounding period will be r/k.  Likewise, if we are interested in the value 
after t years, then there will be kt compounding periods in that time.   
 
 

Compound Interest Formula 

Compound Interest can be calculated using the formula 
kt

k

r
atA 








+= 1)(  

Where 

A(t) is the account value 

t is measured in years 

a is the starting amount of the account, often called the principal 

r is the annual percentage rate (APR), also called the nominal rate 

k is the number of compounding periods in one year 

 
 
Example 8 

If you invest $3,000 in an investment account paying 3% interest compounded 
quarterly, how much will the account be worth in 10 years? 
 
Since we are starting with $3000, a = 3000 
Our interest rate is 3%, so r = 0.03 
Since we are compounding quarterly, we are compounding 4 times per year, so k = 4 
We want to know the value of the account in 10 years, so we are looking for A(10), the 
value when t = 10. 
 

05.4045$
4

03.0
13000)10(

)10(4

=







+=A  

 
The account will be worth $4045.05 in 10 years. 
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Example 9 

A 529 plan is a college savings plan in which a relative can invest money to pay for a 
child’s later college tuition, and the account grows tax free.  If Lily wants to set up a 
529 account for her new granddaughter, wants the account to grow to $40,000 over 18 
years, and she believes the account will earn 6% compounded semi-annually (twice a 
year), how much will Lily need to invest in the account now? 
 
Since the account is earning 6%, r = 0.06 
Since interest is compounded twice a year, k = 2 
 
In this problem, we don’t know how much we are starting with, so we will be solving 
for a, the initial amount needed.  We do know we want the end amount to be $40,000, 
so we will be looking for the value of a so that A(18) = 40,000.   

801,13$
8983.2

000,40

)8983.2(000,40

2

06.0
1)18(000,40

)18(2

≈=

=









+==

a

a

aA

 

 
Lily will need to invest $13,801 to have $40,000 in 18 years. 

 
 

Try it now 
5. Recalculate example 2 from above with quarterly compounding. 

 
 
Because of compounding throughout the year, with compound interest the actual increase 
in a year is more than the annual percentage rate.  If $1,000 were invested at 10%, the 
table below shows the value after 1 year at different compounding frequencies: 
 

Frequency Value after 1 year 

Annually $1100 

Semiannually $1102.50 

Quarterly $1103.81 

Monthly $1104.71 

Daily $1105.16 

 
If we were to compute the actual percentage increase for the daily compounding, there 
was an increase of $105.16 from an original amount of $1,000, for a percentage increase 

of 10516.0
1000

16.105
= = 10.516% increase.  This quantity is called the annual percentage 

yield (APY). 
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Notice that given any starting amount, the amount after 1 year would be 
k

k

r
aA 








+= 1)1( .  To find the total change, we would subtract the original amount, then 

to find the percentage change we would divide that by the original amount: 

11

1

−







+=

−







+ k

k

k

r

a

a
k

r
a

 

 
 

Annual Percentage Yield 

The annual percentage yield is the actual percent a quantity increases in one year.  It 
can be calculated as  

11 −







+=

k

k

r
APY  

 
 
This is equivalent to finding the value of $1 after 1 year, and subtracting the original 
dollar. 
 
 
Example 10 

Bank A offers an account paying 1.2% compounded quarterly.  Bank B offers an 
account paying 1.1% compounded monthly.  Which is offering a better rate? 
 
We can compare these rates using the annual percentage yield – the actual percent 
increase in a year. 

Bank A:  012054.01
4

012.0
1

4

=−







+=APY  = 1.2054% 

Bank B: 011056.01
12

011.0
1

12

=−







+=APY  = 1.1056% 

 
Bank B’s monthly compounding is not enough to catch up with Bank A’s better APR.  
Bank A offers a better rate. 

 
 
A Limit to Compounding 

 

As we saw earlier, the amount we earn increases as we increase the compounding 
frequency.  The table, though, shows that the increase from annual to semi-annual 
compounding is larger than the increase from monthly to daily compounding.  This might 
lead us to believe that although increasing the frequency of compounding will increase 
our result, there is an upper limit to this process. 
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To see this, let us examine the value of $1 invested at 100% interest for 1 year.   
 

Frequency Value 

Annual $2 

Quarterly $2.441406 

Monthly $2.613035 

Daily $2.714567 

Hourly $2.718127 

Once per minute $2.718279 

Once per second $2.718282 

 
These values do indeed appear to be approaching an upper limit.  This value ends up 
being so important that it gets represented by its own letter, much like how π represents a 

number. 
 
 

Euler’s Number: e 

e is the letter used to represent the value that 

k

k








+

1
1  approaches as k gets big. 

718282.2≈e  

 
 
Because e is often used as the base of an exponential, most scientific and graphing 
calculators have a button that can calculate powers of e, usually labeled ex.  Some 
computer software instead defines a function exp(x), where exp(x) = ex. 
 
Because e arises when the time between compounds becomes very small, e allows us to 

define continuous growth and allows us to define a new toolkit function, ( ) x
f x e= . 

 
 

Continuous Growth Formula 

Continuous Growth can be calculated using the formula  
rx

aexf =)(  

where 

a is the starting amount  

r is the continuous growth rate 

 
 
This type of equation is commonly used when describing quantities that change more or 
less continuously, like chemical reactions, growth of large populations, and radioactive 
decay.   
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Example 11 

Radon-222 decays at a continuous rate of 17.3% per day.  How much will 100mg of 
Radon-222 decay to in 3 days? 
 
Since we are given a continuous decay rate, we use the continuous growth formula.  
Since the substance is decaying, we know the growth rate will be negative: r = -0.173 

512.59100)3( )3(173.0
≈=

−
ef mg of Radon-222 will remain. 

 
 

Try it Now 

6.  Interpret the following: 0.12( ) 20 t
S t e= if S(t) represents the growth of a substance in 

grams, and time is measured in days. 

 
 
Continuous growth is also often applied to compound interest, allowing us to talk about 
continuous compounding. 
 
 
Example 12 

If $1000 is invested in an account earning 10% compounded continuously, find the 
value after 1 year. 
 
Here, the continuous growth rate is 10%, so r = 0.10.  We start with $1000, so a = 1000. 
To find the value after 1 year, 

17.1105$1000)1( )1(10.0
≈= ef  

 
Notice this is a $105.17 increase for the year.  As a percent increase, this is 

%517.1010517.0
1000

17.105
==  increase over the original $1000. 

 
 
Notice that this value is slightly larger than the amount generated by daily compounding 
in the table computed earlier. 
 
The continuous growth rate is like the nominal growth rate (or APR) – it reflects the 
growth rate before compounding takes effect.  This is different than the annual growth 

rate used in the formula x
raxf )1()( += , which is like the annual percentage yield – it 

reflects the actual amount the output grows in a year.   
 
While the continuous growth rate in the example above was 10%, the actual annual yield 
was 10.517%.  This means we could write two different looking but equivalent formulas 
for this account’s growth: 

0.10( ) 1000 t
f t e=   using the 10% continuous growth rate 

( ) 1000(1.10517)t
f t =  using the 10.517% actual annual yield rate. 



Chapter 4 262

Important Topics of this Section 

Percent growth  

Exponential functions 

 Finding formulas 

 Interpreting equations 

 Graphs 

Exponential Growth & Decay 

Compound interest 

Annual Percent Yield 

Continuous Growth 

  
 
 

Try it Now Answers 
1. A & C are exponential functions, they grow by a % not a constant number. 
 
2. B(t) is growing faster (r = 0.075 > 0.05), but after 3 years A(t) still has a higher 

account balance 
 

3. tt
tP )97.0(1000)03.01(1000)( =−=  

0071.401)97.0(1000)30( 30
==P  

 

4. 13 ab= , so 
b

a
3

= ,   

25.4 ab= , so 23
5.4 b

b
= .  b35.4 =  

b = 1.5.  2
5.1

3
==a  

( )x
xf 5.12)( =  

 

5. 24 months = 2 years.  

)2(4

4

012.
11000 








+ = $1024.25 

 
6. An initial substance weighing 20g is growing at a continuous rate of 12% per day. 
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Section 4.1 Exercises 

 
For each table below, could the table represent a function that is linear, exponential, or 
neither? 

1. x 1 2 3 4 

f(x) 70 40 10 -20 
 

2. x 1 2 3 4 

g(x) 40 32 26 22 
 

3. x 1 2 3 4 

h(x) 70 49 34.3 24.01 
 

4. x 1 2 3 4 

k(x) 90 80 70 60 
 

5. x 1 2 3 4 

m(x) 80 61 42.9 25.61 
 

6. x 1 2 3 4 

n(x) 90 81 72.9 65.61 
 

 
7. A population numbers 11,000 organisms initially and grows by 8.5% each year.  

Write an exponential model for the population. 

 

8. A population is currently 6,000 and has been increasing by 1.2% each day.  Write an 

exponential model for the population. 

 

9. The fox population in a certain region has an annual growth rate of 9 percent per year. 

It is estimated that the population in the year 2010 was 23,900.  Estimate the fox 

population in the year 2018. 

 

10. The amount of area covered by blackberry bushes in a park has been growing by 12% 

each year. It is estimated that the area covered in 2009 was 4,500 square feet.  

Estimate the area that will be covered in 2020. 

 

11. A vehicle purchased for $32,500 depreciates at a constant rate of 5% each year. 

Determine the approximate value of the vehicle 12 years after purchase. 

 

12. A business purchases $125,000 of office furniture which depreciates at a constant rate 

of 12% each year.  Find the residual value of the furniture 6 years after purchase. 
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Find a formula for an exponential function passing through the two points. 

13. ( )0, 6 , (3, 750)    14. ( )0, 3 , (2, 75)     

15. ( )0, 2000 , (2, 20)    16. ( )0, 9000 , (3, 72)   

17. ( )
3

1, , 3, 24
2

 
− 
 

   18. ( )
2

1, , 1,10
5

 
− 
 

  

19. ( ) ( )2,6 , 3,1−     20. ( )3,4 , (3, 2)−  

21. ( )3,1 , (5, 4)     22. ( )2,5 , (6, 9)  

 

23. A radioactive substance decays exponentially. A scientist begins with 100 milligrams 

of a radioactive substance. After 35 hours, 50 mg of the substance remains. How 

many milligrams will remain after 54 hours? 

  

24. A radioactive substance decays exponentially. A scientist begins with 110 milligrams 

of a radioactive substance. After 31 hours, 55 mg of the substance remains. How 

many milligrams will remain after 42 hours? 

 

25. A house was valued at $110,000 in the year 1985. The value appreciated to $145,000 

by the year 2005.  What was the annual growth rate between 1985 and 2005?  

Assume that the house value continues to grow by the same percentage. What did the 

value equal in the year 2010? 

  

26. An investment was valued at $11,000 in the year 1995. The value appreciated to 

$14,000 by the year 2008.  What was the annual growth rate between 1995 and 2008?  

Assume that the value continues to grow by the same percentage. What did the value 

equal in the year 2012? 

 

27. A car was valued at $38,000 in the year 2003. The value depreciated to $11,000 by 

the year 2009.  Assume that the car value continues to drop by the same percentage. 

What was the value in the year 2013? 

 

28. A car was valued at $24,000 in the year 2006. The value depreciated to $20,000 by 

the year 2009.  Assume that the car value continues to drop by the same percentage. 

What was the value in the year 2014? 

 

29. If $4,000 is invested in a bank account at an interest rate of 7 per cent per year, find 

the amount in the bank after 9 years if interest is compounded annually, quarterly, 

monthly, and continuously. 
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30. If $6,000 is invested in a bank account at an interest rate of 9 per cent per year, find 

the amount in the bank after 5 years if interest is compounded annually, quarterly, 

monthly, and continuously. 

 

31. Find the annual percentage yield (APY) for a savings account with annual percentage 

rate of 3% compounded quarterly. 

 

32. Find the annual percentage yield (APY) for a savings account with annual percentage 

rate of 5% compounded monthly. 

 

33. A population of bacteria is growing according to the equation 0.21 ( ) 1 600 t
P t e= , with t 

measured in years.  Estimate when the population will exceed 7569. 

 

34. A population of bacteria is growing according to the equation 0.17  ( ) 1 200 t
P t e= , with t 

measured in years.  Estimate when the population will exceed 3443. 

 

35. In 1968, the U.S. minimum wage was $1.60 per hour. In 1976, the minimum wage 

was $2.30 per hour. Assume the minimum wage grows according to an exponential 

model ( )w t , where t represents the time in years after 1960.  [UW] 

a. Find a formula for ( )w t . 

b. What does the model predict for the minimum wage in 1960? 

c. If the minimum wage was $5.15 in 1996, is this above, below or equal to what 

the model predicts? 

 

36. In 1989, research scientists published a model for predicting the cumulative number 

of AIDS cases (in thousands) reported in the United States: ( )
3

1980
155

10

t
a t

− 
=  

 
, 

where t is the year.  This paper was considered a “relief”, since there was a fear the 

correct model would be of exponential type. Pick two data points predicted by the 

research model ( )a t  to construct a new exponential model ( )b t  for the number of 

cumulative AIDS cases. Discuss how the two models differ and explain the use of the 

word “relief.”  [UW] 
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37. You have a chess board as pictured, with 

squares numbered 1 through 64. You also 

have a huge change jar with an unlimited 

number of dimes. On the first square you 

place one dime. On the second square you 

stack 2 dimes. Then you continue, always 

doubling the number from the previous 

square.  [UW] 

a. How many dimes will you have 

stacked on the 10th square? 

b. How many dimes will you have 

stacked on the nth square? 

c. How many dimes will you have 

stacked on the 64th square? 

d. Assuming a dime is 1 mm thick, how high will this last pile be? 

e. The distance from the earth to the sun is approximately 150 million km. 

Relate the height of the last pile of dimes to this distance. 
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Section 4.2 Graphs of Exponential Functions 

 
Like with linear functions, the graph of an exponential function is determined by the 
values for the parameters in the function’s formula.   
 
To get a sense for the behavior of exponentials, let us begin by looking more closely at 

the function x
xf 2)( = .  Listing a table of values for this function: 

x -3 -2 -1 0 1 2 3 

f(x) 
8

1
 

4

1
 

2

1
 1 2 4 8 

 
Notice that: 

1) This function is positive for all values of x. 
2) As x increases, the function grows faster and faster (the rate of change 

increases). 
3) As x decreases, the function values grow smaller, approaching zero. 
4) This is an example of exponential growth. 

 

Looking at the function 

x

xg 







=

2

1
)(  

x -3 -2 -1 0 1 2 3 

g(x) 8 4 2 1 
2

1
 

4

1
 

8

1
 

 
Note this function is also positive for all values of x, but in this case grows as x decreases, 
and decreases towards zero as x increases.  This is an example of exponential decay.  You 
may notice from the table that this function appears to be the horizontal reflection of the 

x
xf 2)( =  table.  This is in fact the case: 

)(
2

1
)2(2)( 1

xgxf

x

xx
=








===−

−−  

 
Looking at the graphs also confirms this 
relationship. 
 

Consider a function of the form x
abxf =)( .  

Since a, which we called the initial value in the 
last section, is the function value at an input of 
zero, a will give us the vertical intercept of the 
graph.   
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From the graphs above, we can see that an exponential graph will have a horizontal 
asymptote on one side of the graph, and can either increase or decrease, depending upon 
the growth factor.  This horizontal asymptote will also help us determine the long run 
behavior and is easy to determine from the graph.  
 
The graph will grow when the growth rate is positive, which will make the growth factor 
b larger than one.  When it’s negative, the growth factor will be less than one. 
 
 

Graphical Features of Exponential Functions 

Graphically, in the function x
abxf =)(  

a is the vertical intercept of the graph 

b determines the rate at which the graph grows.  When a is positive, 

 the function will increase if b > 1 

 the function will decrease if 0 < b < 1 

The graph will have a horizontal asymptote at y = 0 

The graph will be concave up if a > 0;  concave down if a < 0. 

 

The domain of the function is all real numbers 

The range of the function is (0, )∞  

 
 
When sketching the graph of an exponential function, it can be helpful to remember that 
the graph will pass through the points (0, a) and (1, ab). 
 
The value b will determine the function’s long run behavior: 
If b > 1, as ∞→x  , ∞→)(xf  and as −∞→x ,  0)( →xf . 

If 0 < b < 1, as ∞→x , 0)( →xf  and as −∞→x , ∞→)(xf . 

 
 
Example 1 

Sketch a graph of 

x

xf 







=

3

1
4)(  

 
This graph will have a vertical intercept at (0,4), and pass 

through the point 








3

4
,1 .  Since b < 1, the graph will be 

decreasing towards zero.  Since a > 0, the graph will be 
concave up. 
 

We can also see from the graph the long run behavior: as 
∞→x , 0)( →xf  and as −∞→x , ∞→)(xf . 
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To get a better feeling for the effect of a and b on the graph, examine the sets of graphs 
below.  The first set shows various graphs, where a remains the same and we only change 
the value for b. 
 

 
  

Notice that the closer the value of b is to 1, the less steep the graph will be.    
 
In the next set of graphs, a is altered and our value for b remains the same. 
 
 

 
 

 

Notice that changing the value for a changes the vertical intercept.  Since a is multiplying 
the bx term, a acts as a vertical stretch factor, not as a shift.  Notice also that the long run 
behavior for all of these functions is the same because the growth factor did not change 
and none of these a values introduced a vertical flip. 
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Example 2 

Match each equation with its graph. 

x

x

x

x

xk

xh

xg

xf

)7.0(4)(

)3.1(4)(

)8.1(2)(

)3.1(2)(

=

=

=

=

 

 
 
 
 
 
The graph of k(x) is the easiest to identify, since it is the only equation with a growth 
factor less than one, which will produce a decreasing graph.  The graph of h(x) can be 
identified as the only growing exponential function with a vertical intercept at (0,4).  
The graphs of f(x) and g(x) both have a vertical intercept at (0,2), but since g(x) has a 
larger growth factor, we can identify it as the graph increasing faster. 
 

 
 
 

Try it Now 
1. Graph the following functions on the same axis:  

x
xf )2()( =  ; x

xg )2(2)( = ; x
xh )2/1(2)( = . 

 
 
Transformations of Exponential Graphs 
 
While exponential functions can be transformed following the same rules as any function, 
there are a few interesting features of transformations that can be identified.  The first 
was seen at the beginning of the section – that a horizontal reflection is equivalent to a 
change in the growth factor.  Likewise, since a is itself a stretch factor, a vertical stretch 
of an exponential corresponds with a change in the initial value of the function. 
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Next consider the effect of a horizontal shift on an exponential function.  Shifting the 

function x
xf )2(3)( =  four units to the left would give 4)2(3)4( +

=+
x

xf .  Employing 

exponent rules, we could rewrite this: 
xxx

xf )2(48)2()2(3)2(3)4( 44
===+

+  

 
Interestingly, it turns out that a horizontal shift of an exponential function corresponds 
with a change in initial value of the function. 
 
Lastly, consider the effect of a vertical shift on an exponential function.  Shifting 

x
xf )2(3)( =  down 4 units would give the equation 4)2(3)( −=

x
xf . 

 

Graphing that, notice it is substantially different 
than the basic exponential graph.  Unlike a basic 
exponential, this graph does not have a 
horizontal asymptote at y = 0; due to the vertical 
shift, the horizontal asymptote has also shifted 
to y = -4.  We can see that as x →∞ , ( )f x → ∞  

and as x → −∞ , ( ) 4f x → − . 

 
We have determined that a vertical shift is the 
only transformation of an exponential function 
that changes the graph in a way that cannot be 

achieved by altering the parameters a and b in the basic exponential function x
abxf =)( . 

 
 

Transformations of Exponentials 

Any transformed exponential can be written in the form 

cabxf
x

+=)(  

 

where y = c is the horizontal asymptote. 

 
 
Note that, due to the shift, the vertical intercept is shifted to (0, a+c). 
 
 

Try it Now 
2. Write the equation and graph the exponential function described as follows: 

x
exf =)( is vertically stretched by a factor of 2, flipped across the y axis and shifted 

up 4 units. 
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Example 3 

Sketch a graph of 4
2

1
3)( +








−=

x

xf . 

 
Notice that in this exponential function, the negative in the stretch factor -3 will cause a 
vertical reflection, and the vertical shift up 4 will move the horizontal asymptote to       

y = 4.  Sketching this as a transformation of 

x

xg 







=

2

1
)( , 

The basic 

x

xg 







=

2

1
)(   Vertically reflected and stretched by 3 

  

 
Vertically shifted up four units 

 
 
Notice that while the domain of this function is unchanged, due to the reflection and 

shift, the range of this function is ( ), 4−∞ . 

As ∞→x , 4)( →xf  and as −∞→x , ( )f x → −∞ . 

 

 

Functions leading to graphs like the one above are common as models for learning and 
models of growth approaching a limit. 
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Example 4 

Find an equation for the function graphed. 
 

Looking at this graph, it appears to have a horizontal 
asymptote at y = 5, suggesting an equation of the form 

5)( +=
x

abxf .  To find values for a and b, we can 

identify two other points on the graph.  It appears the 
graph passes through (0,2) and (-1,3), so we can use 
those points.  Substituting in (0,2) allows us to solve 
for a. 

3

52

52 0

−=

+=

+=

a

a

ab

 

 
Substituting in (-1,3) allows us to solve for b 

5.1
2

3

32

3
2

533 1

==

−=−

−
=−

+−=
−

b

b

b

b

 

The final formula for our function is 5)5.1(3)( +−=
x

xf . 

 
 

Try it Now   
3. Given the graph of the transformed exponential function, find a formula and describe 

the long run behavior. 
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Important Topics of this Section 

Graphs of exponential functions 

 Intercept 

 Growth factor 

Exponential Growth 

Exponential Decay 

Horizontal intercepts 

Long run behavior  

Transformations 

 
 

Try it Now Answers 

1.  
 

2. 42)( +−=
x

exf  

   
 

3. Horizontal asymptote at y = -1, so 1)( −=
x

abxf .  Substitute (0, 2) to find a = 3. 

Substitute (1,5) to find 135 1
−= b , b = 2. 

( ) 3(2 ) 1x
f x = −    or 1)5(.3)( −=

− x
xf  

As ∞→x , ∞→)(xf  and as −∞→x ,  1)( −→xf
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Section 4.2 Exercises 

 
Match each function with one of the graphs below. 

1. ( ) ( )2 0.69
x

f x =   

2. ( ) ( )2 1.28
x

f x =   

3. ( ) ( )2 0.81
x

f x =  

4. ( ) ( )4 1.28
x

f x =    

5. ( ) ( )2 1.59
x

f x =     

6. ( ) ( )4 0.69
x

f x =    

 
If all the graphs to the right have equations with form 

( ) xf x ab= ,   

7. Which graph has the largest value for b?   

8. Which graph has the smallest value for b?   

9. Which graph has the largest value for a? 

10. Which graph has the smallest value for a? 

 
 

Sketch a graph of each of the following transformations of ( ) 2xf x =  

11. ( ) 2 xf x −
=     12. ( ) 2xg x = −    

13. ( ) 2 3xh x = +     14. ( ) 2 4xf x = −   

15. ( ) 22xf x −
=     16. ( ) 32xk x −

=   

 

Starting with the graph of ( ) 4xf x = , find a formula for the function that results from 

17. Shifting ( )f x  4 units upwards 

18. Shifting ( )f x  3 units downwards 

19. Shifting ( )f x  2 units left 

20. Shifting ( )f x  5 units right 

21. Reflecting ( )f x  about the x-axis 

22. Reflecting ( )f x  about the y-axis 
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Describe the long run behavior, as x →∞   and x → −∞  of each function 

23. ( ) ( )5 4 1xf x = − −     24. ( ) ( )2 3 2xf x = − +   

25. ( )
1

3 2
2

x

f x
 

= − 
 

    26. ( )
1

4 1
4

x

f x
 

= + 
 

 

27. ( ) ( )3 4 2
x

f x
−

= +     28. ( ) ( )2 3 1
x

f x
−

= − −   

 

Find a formula for each function graphed as a transformation of ( ) 2xf x = . 

29.    30.  
 

31.    32.  
 
Find an equation for the exponential function graphed. 

33.    34.   

35.    36.  
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Section 4.3 Logarithmic Functions 

 

A population of 50 flies is expected to double every week, leading to a function of the 

form x
xf )2(50)( = , where x represents the number of weeks that have passed.  When 

will this population reach 500?  Trying to solve this problem leads to: 

500 50(2)x
=   Dividing both sides by 50 to isolate the exponential 

10 2 x
=  

 

While we have set up exponential models and used them to make predictions, you may 
have noticed that solving exponential equations has not yet been mentioned.  The reason 
is simple: none of the algebraic tools discussed so far are sufficient to solve exponential 

equations.  Consider the equation 102 =
x  above.  We know that 823

=  and 1624
= , so 

it is clear that x must be some value between 3 and 4 since ( ) 2x
g x =  is increasing.  We 

could use technology to create a table of values or graph to better estimate the solution.  
 

From the graph, we could better estimate the solution to be 
around 3.3.  This result is still fairly unsatisfactory, and since 
the exponential function is one-to-one, it would be great to 
have an inverse function.  None of the functions we have 
already discussed would serve as an inverse function and so 
we must introduce a new function, named log as the inverse 
of an exponential function.  Since exponential functions have 
different bases, we will define corresponding logarithms of 
different bases as well. 
 
 

Logarithm 

The logarithm (base b) function, written ( )xblog , is the inverse of the exponential 

function (base b), x
b . 

 
 
Since the logarithm and exponential are inverses, it follows that: 
 

Properties of Logs: Inverse Properties 

( ) xb
x

b =log    

xb
xb =

log  

 
 

Recall from the definition of an inverse function that if caf =)( , then acf =
− )(1 .  

Applying this to the exponential and logarithmic functions, we can convert between a 
logarithmic equation and its equivalent exponential. 
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Logarithm Equivalent to an Exponential 

The statement cb
a

=  is equivalent to the statement acb =)(log . 

 
 

Alternatively, we could show this by starting with the exponential function a
c b= , then 

taking the log base b of both sides, giving log ( ) log a

b bc b= .  Using the inverse property 

of logs, we see that log ( )
b

c a= . 

 

Since log is a function, it is most correctly written as )(log cb , using parentheses to 

denote function evaluation, just as we would with f(c).  However, when the input is a 
single variable or number, it is common to see the parentheses dropped and the 

expression written as cblog . 

 
 
Example 1 

Write these exponential equations as logarithmic equations: 

a) 823
=   b) 2552

=   c) 
10000

1
10 4

=
−  

 

a)  823
=   is equivalent to 3)8(log2 =  

 

b)  2552
=   is equivalent to 2)25(log5 =  

c)  4 1
10

10000

−
=  is equivalent to 10

1
log 4

10000

 
= − 

 
 

 
 
Example 2 

Write these logarithmic equations as exponential equations: 

a) ( )
2

1
6log 6 =   b) ( ) 29log3 =  

 

a) ( )
2

1
6log 6 =   is equivalent to 66 2/1

=  

b) ( ) 29log3 =   is equivalent to 932
=  

 
 

Try it Now 

1.  Write the exponential equation 1642
=  as a logarithmic equation. 
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By establishing the relationship between exponential and logarithmic functions, we can 
now solve basic logarithmic and exponential equations by rewriting. 
 
 
Example 3 

Solve ( ) 2log4 =x  for x. 

 

By rewriting this expression as an exponential, x=
24 , so x = 16. 

 
 
Example 4 

Solve 102 =
x  for x. 

 

By rewriting this expression as a logarithm, we get )10(log2=x . 

 
 
While this does define a solution, and an exact solution at that, you may find it somewhat 
unsatisfying since it is difficult to compare this expression to the decimal estimate we 
made earlier.  Also, giving an exact expression for a solution is not always useful – often 
we really need a decimal approximation to the solution.  Luckily, this is a task calculators 
and computers are quite adept at.  Unluckily for us, most calculators and computers will 
only evaluate logarithms of two bases.  Happily, this ends up not being a problem, as 
we’ll see briefly. 
 
 

Common and Natural Logarithms 

The common log is the logarithm with base 10, and is typically written )log(x . 

The natural log is the logarithm with base e, and is typically written )ln(x . 

 
 
Example 5 

Evaluate )1000log(  using the definition of the 

common log. 
 
To evaluate )1000log( , we can let 

)1000log(=x , then rewrite into exponential 

form using the common log base of 10: 

100010 =
x . 

 
From this, we might recognize that 1000 is the 
cube of 10, so x = 3. 
 

We also can use the inverse property of logs to write ( ) 310log 3

10 = . 

Values of the common log 

number number as 
exponential 

log(number) 

1000 103 3 

100 102 2 

10 101 1 

1 100 0 

0.1 10-1 -1 

0.01 10-2 -2 

0.001 10-3 -3 
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Try it Now 
2. Evaluate )1000000log( . 

 
 
Example 6 

Evaluate ( )eln . 

 

We can rewrite ( )eln  as ( )2/1ln e .  Since ln is a log base e, we can use the inverse 

property for logs:  ( ) ( )
2

1
logln 2/12/1

== ee e
. 

 
 
Example 7 

Evaluate log(500) using your calculator or computer. 
 
Using a computer, we can evaluate 69897.2)500log( ≈  

 
 
To utilize the common or natural logarithm functions to evaluate expressions like 

)10(log2 , we need to establish some additional properties. 

 
 

Properties of Logs: Exponent Property 

( ) ( )ArA b

r

b loglog =  

 
 
To show why this is true, we offer a proof: 

Since the logarithmic and exponential functions are inverses, Ab
Ab =

log . 

Raising both sides to the r power, we get ( )rAr bbA
log

= . 

Utilizing the exponential rule that states ( )
q

p pqx x= , ( ) ArrAr bb bbA
loglog

==  

Taking the log of both sides, ( ) ( )Ar

b

r

b
bbA

logloglog =  

Utilizing the inverse property on the right side yields the result:  ( ) ArA b

r

b loglog =  

 
 
Example 8 

Rewrite ( )25log3  using the exponent property for logs. 

 
Since 25 = 52,  

( ) ( ) ( )5log25log25log 3

2

33 ==  
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Example 9 

Rewrite )ln(4 x using the exponent property for logs. 

 

Using the property in reverse, ( )4ln)ln(4 xx = . 

 
 

Try it Now 

3. Rewrite using the exponent property for logs: 







2

1
ln

x
.  

 
 
The exponent property allows us to find a method for changing the base of a logarithmic 
expression. 
 
 

Properties of Logs: Change of Base 

( )
)(log

)(log
log

b

A
A

c

c

b =  

 
 
Proof: 

Let ( ) xAb =log .   

Rewriting as an exponential gives Ab
x

= .   

Taking the log base c of both sides of this equation gives Ab c

x

c loglog = , 

Now utilizing the exponent property for logs on the left side,  Abx cc loglog =  

Dividing, we obtain 
b

A
x

c

c

log

log
=  .  Replacing our original expression for x, 

b

A
A

c

c

b
log

log
log =  

 
With this change of base formula, we can finally find a good decimal approximation to 
our question from the beginning of the section. 
 
 
Example 10 

Evaluate )10(log2  using the change of base formula. 

 
According to the change of base formula, we can rewrite the log base 2 as a logarithm 
of any other base.  Since our calculators can evaluate the natural log, we might choose 
to use the natural logarithm, which is the log base e: 
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2ln

10ln

2log

10log
10log 2 ==

e

e  

 
Using our calculators to evaluate this, 

3219.3
69315.0

30259.2

2ln

10ln
≈≈  

 
This finally allows us to answer our original question – the population of flies we 
discussed at the beginning of the section will take 3.32 weeks to grow to 500. 

 
 
Example 11 

Evaluate )100(log 5  using the change of base formula. 

 
We can rewrite this expression using any other base.  If our calculators are able to 
evaluate the common logarithm, we could rewrite using the common log, base 10. 

861.2
69897.0

2

5log

100log
)100(log

10

10
5 =≈=  

 
 

While we can solve the basic exponential equation 102 =
x  by rewriting in logarithmic 

form and then using the change of base formula to evaluate the logarithm, the proof of 
the change of base formula illuminates an alternative approach to solving exponential 
equations.  
 
 

Solving exponential equations: 

1. Isolate the exponential expressions when possible 

2. Take the logarithm of both sides 

3. Utilize the exponent property for logarithms to pull the variable out of the 
exponent 

4. Use algebra to solve for the variable. 

 
 
Example 12 

Solve 102 =
x  for x. 

 
Using this alternative approach, rather than rewrite this exponential into logarithmic 
form, we will take the logarithm of both sides of the equation.  Since we often wish to 
evaluate the result to a decimal answer, we will usually utilize either the common log or 
natural log.  For this example, we’ll use the natural log: 
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( ) )10ln(2ln =
x   Utilizing the exponent property for logs, 

( ) )10ln(2ln =x   Now dividing by ln(2), 

( )
3219.3

2ln

)10ln(
≈=x  

 
Notice that this result matches the result we found using the change of base formula. 

 
 
Example 13 

In the first section, we predicted the population (in billions) of India t years after 2008 

by using the function t
tf )0134.01(14.1)( += .  If the population continues following 

this trend, when will the population reach 2 billion? 
 
We need to solve for time t so that f(t) = 2. 
 

t)0134.1(14.12 =   Divide by 1.14 to isolate the exponential expression 

t0134.1
14.1

2
=   Take the logarithm of both sides of the equation 

( )t0134.1ln
14.1

2
ln =








 Apply the exponent property on the right side 

( )0134.1ln
14.1

2
ln t=








 Divide both sides by ln(1.0134) 

( )
23.42

0134.1ln

14.1

2
ln

≈










=t  years 

 
If this growth rate continues, the model predicts the population of India will reach 2 
billion about 42 years after 2008, or approximately in the year 2050. 

 
 

Try it Now 

4.  Solve 10)93.0(5 =
x . 

 
 
Example 14 

Solve 2)07.1(5 3
=

t  

 

To start, we want to isolate the exponential part of the expression, the t3)07.1( , so it is 

alone on one side of the equation.  Then we can use the log to solve the equation.  We 
can use any base log; this time we’ll use the common log. 
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2)07.1(5 3
=

t     Divide both sides by 5 to isolate the exponential 

5

2
)07.1( 3

=
t     Take the log of both sides.  

( ) 







=

5

2
log)07.1(log 3t   Use the exponent property for logs 

( ) 







=

5

2
log07.1log3t   Divide by ( )07.1log3  on both sides 

( )
( ) ( )07.1log3

5

2
log

07.1log3

07.1log3









=
t

  Simplify and evaluate 

( )
5143.4

07.1log3

5

2
log

−≈










=t  

 
Note that when entering that expression on your calculator, be sure to put parentheses 
around the whole denominator to ensure the proper order of operations: 
log(2/5)/(3*log(1.07)) 

 
 
In addition to solving exponential equations, logarithmic expressions are common in 
many physical situations. 
 
 
Example 15 

In chemistry, pH is a measure of the acidity or basicity of a liquid.  The pH is related to 
the concentration of hydrogen ions, [H+], measured in moles per liter, by the equation 

( )logpH H
+ = −   .   

If a liquid has concentration of 0.0001 moles per liber, determine the pH. 
Determine the hydrogen ion concentration of a liquid with pH of 7. 
 

To answer the first question, we evaluate the expression ( )0001.0log− .  While we could 

use our calculators for this, we do not really need them here, since we can use the 
inverse property of logs: 

( ) ( ) 4)4(10log0001.0log 4
=−−=−=−

−  

 

To answer the second question, we need to solve the equation ( )7 log H
+ = −   .  Begin 

by isolating the logarithm on one side of the equation by multiplying both sides by -1: 

( )7 log H
+ − =   .  Rewriting into exponential form yields the answer: 

710 0.0000001H + −  = =   moles per liter. 
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Logarithms also provide us a mechanism for finding continuous growth models for 
exponential growth given two data points. 
 
 
Example 15 

A population grows from 100 to 130 in 2 weeks.  Find the continuous growth rate. 
 

Measuring t in weeks, we are looking for an equation rt
aetP =)(  so that P(0) = 100 and 

P(2) = 130.  Using the first pair of values, 
0100 r

ae
⋅

= , so a = 100. 

 
Using the second pair of values,  

2130 100 r
e

⋅
=   Divide by 100 

2

100

130 r
e=   Take the natural log of both sides 

( )2ln)3.1ln( r
e=  Use the inverse property of logs 

1312.0
2

)3.1ln(

2)3.1ln(

≈=

=

r

r

 

 
This population is growing at a continuous rate of 13.12% per week. 

 
In general, we can relate the standard form of an exponential with the continuous growth 
form by noting (using k to represent the continuous growth rate to avoid the confusion of 
using r in two different ways in the same formula): 

kxx
aera =+ )1(   

kxx
er =+ )1(  

k
er =+1  

 
 

Converting Between Periodic to Continuous Growth Rate 

In the equation x
raxf )1()( += , r is the periodic growth rate, the percent growth 

each time period (weekly growth, annual growth, etc.). 

 

In the equation kx
aexf =)( , k is the continuous growth rate. 

 

You can convert between these using:  k
er =+1 . 

 
 
Remember that the continuous growth rate k represents the nominal growth rate before 
accounting for the effects of continuous compounding, while r represents the actual 
percent increase in one time unit (one week, one year, etc.). 
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Example 16 

A company’s sales can be modeled by the function t
etS

12.05000)( = , with t measured in 

years.  Find the annual growth rate. 
 

Noting that k
er =+1 , then 1275.0112.0

=−= er , so the annual growth rate is 12.75%.  

The sales function could also be written in the form t
tS )1275.01(5000)( += . 

 
 

Important Topics of this Section 

The Logarithmic function as the inverse of the exponential function 

Writing logarithmic & exponential expressions 

Properties of logs 

    Inverse properties 

    Exponential properties 

    Change of base  

Common log 

Natural log 

Solving exponential equations 

Converting between periodic and continuous growth rate. 

 
 

Try it Now Answers 

1. ( ) 4log24log216log 4

2

44 ===  

 

2.  ( ) ( ) 610log1000000log 6
==  

 

3. ( ) )ln(2ln
1

ln 2

2
xx

x
−==







 −  

 

4. 10)93.0(5 =
x  

2)93.0( =
x  

( ) ( )2ln93.0ln =
x  

( ) ( )2ln93.0ln =x  

5513.9
)93.0ln(

)2ln(
−≈  
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Section 4.3 Exercises 

 
Rewrite each equation in exponential form 

1. 4log ( )q m=  2. 3log ( )t k=   3. log ( )a b c=   4. log ( )
p

z u=    

( )5. log v t=   6. ( )log r s=   7. ( )ln w n=   8. ( )ln x y=  

  
Rewrite each equation in logarithmic form.   

9. 4x
y=   10. 5y

x=   11. d
c k=   12. z

n L=  

13. 10a
b=   14. 10 p

v=   15. k
e h=   16. y

e x=  

 
Solve for x. 

17. ( )3log 2x =  18. 4log ( ) 3x =  19. 2log ( ) 3x = −  20. 5log ( ) 1x = −  

21. ( )log 3x =   22. ( )log 5x =   23. ( )ln 2x =   24. ( )ln 2x = −      

 
Simplify each expression using logarithm properties. 

25. ( )5log 25   26. ( )2log 8   27. 3

1
log

27

 
 
 

  28. 6

1
log

36

 
 
 

 

29. ( )6log 6   30. ( )3
5log 5   31. ( )log 10,000  32. ( )log 100  

33. ( )log 0.001  34. ( )log 0.00001  35. ( )2ln e−   36. ( )3ln e   

 
Evaluate using your calculator. 

37. ( )log 0.04   38. ( )log 1045   39. ( )ln 15   40. ( )ln 0.02    

 
Solve each equation for the variable. 

41. 5 14x
=   42. 3 23x

=   43. 
1

7
15

x
=   44. 

1
3

4

x
=  

45. 5 17x
e =    46. 3 12x

e =   47. 4 53 38x−
=   48. 2 34 44x−

=  

49. ( )1000 1.03 5000
t

=    50. ( )200 1.06 550
t

=  

51. ( )
3

3 1.04 8
t

=      52. ( )
4

2 1.08 7
t

=  

53. 0.1250 10t
e

−
=      54. 0.0310 4t

e
−

=  

55. 
1

10 8 5
2

x

 
− = 

 
     56. 

1
100 100 70

4

x

 
− = 
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Convert the equation into continuous growth form, ( ) ktf t ae= . 

57. ( ) ( )300 0.91
t

f t =    58. ( ) ( )120 0.07
t

f t =   

59. ( ) ( )10 1.04
t

f t =     60. ( ) ( )1400 1.12
t

f t =  

 

Convert the equation into annual growth form, ( ) tf t ab= . 

61. ( ) 0.061 50 tf t e=     62. ( ) 0.12100 tf t e=  

63. ( ) 0.01250 tf t e−
=    64. ( ) 0.8580 tf t e−

=  

 
65. The population of Kenya was 39.8 million in 2009 and has been growing by about 

2.6% each year.  If this trend continues, when will the population exceed 45 million? 

 

66. The population of Algeria was 34.9 million in 2009 and has been growing by about 

1.5% each year.  If this trend continues, when will the population exceed 45 million? 

 

67. The population of Seattle grew from 563,374 in 2000 to 608,660 in 2010.  If the 

population continues to grow exponentially at the same rate, when will the population 

exceed 1 million people? 

 

68. The median household income (adjusted for inflation) in Seattle grew from $42,948 

in 1990 to $45,736 in 2000.  If it continues to grow exponentially at the same rate, 

when will median income exceed $50,000? 

 

69. A scientist begins with 100 mg of a radioactive substance.  After 4 hours, it has 

decayed to 80 mg.  How long after the process began will it take to decay to 15 mg? 

 

70. A scientist begins with 100 mg of a radioactive substance.  After 6 days, it has 

decayed to 60 mg.  How long after the process began will it take to decay to 10 mg? 

 

71. If $1000 is invested in an account earning 3% compounded monthly, how long will it 

take the account to grow in value to $1500? 

 

72. If $1000 is invested in an account earning 2% compounded quarterly, how long will it 

take the account to grow in value to $1300? 
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Section 4.4 Logarithmic Properties 

 

In the previous section, we derived two important properties of logarithms, which 
allowed us to solve some basic exponential and logarithmic equations.   
 
 

Properties of Logs 

Inverse Properties: 

( ) xb
x

b =log    

xb
xb =

log  

 

Exponential Property: 

( ) ( )ArA b

r

b loglog =  

 

Change of Base: 

( )
)(log

)(log
log

b

A
A

c

c

b =  

 
 
While these properties allow us to solve a large number of problems, they are not 
sufficient to solve all problems involving exponential and logarithmic equations.  
 
 

Properties of Logs 

Sum of Logs Property: 

( ) ( ) )(logloglog ACCA bbb =+  

 

Difference of Logs Property: 

( ) ( ) 







=−

C

A
CA bbb logloglog  

 
 
It’s just as important to know what properties logarithms do not satisfy as to memorize 
the valid properties listed above.  In particular, the logarithm is not a linear function, 
which means that it does not distribute:  log(A + B) ≠ log(A) + log(B).   
 
To help in this process we offer a proof to help solidify our new rules and show how they 
follow from properties you’ve already seen. 
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Let ( )Aa blog=  and ( )Cc blog= .   

By definition of the logarithm, Ab
a

=  and Cb
c

= . 

Using these expressions, ca
bbAC =  

Using exponent rules on the right, ca
bAC

+
=  

Taking the log of both sides, and utilizing the inverse property of logs,  

( ) ( ) cabAC
ca

bb +==
+loglog  

Replacing a and c with their definition establishes the result 

( ) CAAC bbb logloglog +=  

 
The proof for the difference property is very similar. 
 
With these properties, we can rewrite expressions involving multiple logs as a single log, 
or break an expression involving a single log into expressions involving multiple logs. 
 
 
Example 1 

Write ( ) ( ) ( )2log8log5log 333 −+  as a single logarithm. 

 
Using the sum of logs property on the first two terms, 

( ) ( ) ( ) ( )40log85log8log5log 3333 =⋅=+  

 
This reduces our original expression to ( ) ( )2log40log 33 −  

 
Then using the difference of logs property, 

( ) ( ) ( )20log
2

40
log2log40log 3333 =








=−  

 
 
Example 2 

Evaluate ( ) ( )4log5log2 +  without a calculator by first rewriting as a single logarithm. 

 
On the first term, we can use the exponent property of logs to write 

( ) ( ) ( )25log5log5log2 2
==  

 

With the expression reduced to a sum of two logs, ( ) ( )4log25log + , we can utilize the 

sum of logs property 

( ) ( ) )100log()254log(4log25log =⋅=+  

 
Since 100 = 102, we can evaluate this log without a calculator: 

( ) 210log)100log( 2
==  
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Try it Now 
1. Without a calculator evaluate by first rewriting as a single logarithm: 

( ) ( )4log8log 22 +  

 
 
Example 3 

Rewrite 








7
ln

4 yx
 as a sum or difference of logs 

 
First, noticing we have a quotient of two expressions, we can utilize the difference 
property of logs to write 

( ) )7ln(ln
7

ln 4
4

−=







yx

yx
 

 
Then seeing the product in the first term, we use the sum property 

( ) ( ) )7ln()ln(ln)7ln(ln 44
−+=− yxyx  

 
Finally, we could use the exponent property on the first term 

( ) )7ln()ln()ln(4)7ln()ln(ln 4
−+=−+ yxyx  

 
 
Interestingly, solving exponential equations was not the reason 
logarithms were originally developed.  Historically, up until the 
advent of calculators and computers, the power of logarithms was 
that these log properties reduced multiplication, division, roots, or 
powers to be evaluated using addition, subtraction, division and 
multiplication, respectively, which are much easier to compute 
without a calculator.  Large books were published listing the 
logarithms of numbers, such as in the table to the right.  To find 
the product of two numbers, the sum of log property was used.  
Suppose for example we didn’t know the value of 2 times 3.  
Using the sum property of logs: 
 

)3log()2log()32log( +=⋅  

 
Using the log table, 

7781513.04771213.03010300.0)3log()2log()32log( =+=+=⋅  

 
We can then use the table again in reverse, looking for 0.7781513 as an output of the 
logarithm.  From that we can determine: 

)6log(7781513.0)32log( ==⋅ . 

 
By using addition and the table of logs, we were able to determine 632 =⋅ .    

value log(value) 

1 0.0000000 

2 0.3010300 

3 0.4771213 

4 0.6020600 

5 0.6989700 

6 0.7781513 

7 0.8450980 

8 0.9030900 

9 0.9542425 

10 1.0000000 
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Likewise, to compute a cube root like 3 8  

( ) )2log(3010300.0)9030900.0(
3

1
)8log(

3

1
8log)8log( 3/13 ======   

So 283 = . 

 
Although these calculations are simple and insignificant, they illustrate the same idea that 
was used for hundreds of years as an efficient way to calculate the product, quotient, 
roots, and powers of large and complicated numbers, either using tables of logarithms or 
mechanical tools called slide rules. 
 
These properties still have other practical applications for interpreting changes in 
exponential and logarithmic relationships. 
 
 
Example 4 

Recall that in chemistry, ( )logpH H
+ = −   .  If the concentration of hydrogen ions in a 

liquid is doubled, what is the affect on pH? 
 
Suppose C is the original concentration of hydrogen ions, and P is the original pH of the 

liquid, so ( )CP log−= .   If the concentration is doubled, the new concentration is 2C.  

Then the pH of the new liquid is 

( )CpH 2log−=  

 
Using the sum property of logs, 

( ) ( ) )log()2log()log()2log(2log CCCpH −−=+−=−=  

 

Since ( )CP log−= , the new pH is 

301.0)2log( −=−= PPpH  

 
When the concentration of hydrogen ions is doubled, the pH decreases by 0.301. 

 
 
Log properties in solving equations 

 

The logarithm properties often arise when solving problems involving logarithms.  First, 
we’ll look at a simpler log equation. 
 
 
Example 5 

Solve 3)62log( =−x . 

 
To solve for x, we need to get it out from inside the log function.  There are two ways 
we can approach this. 
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Method 1:  Rewrite as an exponential.   
 
Recall that since the common log is base 10, BA =)log(  can be rewritten as the 

exponential A
B

=10 .  Likewise, 3)62log( =−x  can be rewritten in exponential form as 

62103
−= x   

 
Method 2:  Exponentiate both sides. 
 

If BA = , then BA 1010 = .  Using this idea, since 3)62log( =−x , then 3)62log( 1010 =
−x .  

Use the inverse property of logs to rewrite the left side and get 31062 =−x . 

 

Using either method, we now need to solve 31062 =−x .  Evaluate 310  to get 

100062 =−x  Add 6 to both sides 

10062 =x   Divide both sides by 2 
503=x  

 
Occasionally the solving process will result in extraneous solutions – answers that are 
outside the domain of the original equation.  In this case, our answer looks fine. 

 
 
Example 6 

Solve 2)log()2550log( =−+ xx . 

 
In order to rewrite in exponential form, we need a single logarithmic expression on the 
left side of the equation.  Using the difference property of logs, we can rewrite the left 
side: 

2
2550

log =






 +

x

x
 

 
Rewriting in exponential form reduces this to an algebraic equation: 

10010
2550 2

==
+

x

x
  Multiply both sides by x 

xx 1002550 =+    Combine like terms 

x5025 =     Divide by 50 

2

1

50

25
==x  

 
Checking this answer in the original equation, we can verify there are no domain issues, 
and this answer is correct. 

 
 

Try it Now 

2.  Solve )2log(1)4log( 2
++=− xx . 
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Example 7 

Solve )144ln()1ln()2ln( +=+++ xxx . 

 
)144ln()1ln()2ln( +=+++ xxx   Use the sum of logs property on the right 

( ) )144ln()1)(2(ln +=++ xxx   Expand 

( ) )144ln(23ln 2
+=++ xxx     

 
We have a log on both side of the equation this time.  Rewriting in exponential form 
would be tricky, so instead we can exponentiate both sides. 

( ) )134ln(23ln 2
+++

=
xxx

ee     Use the inverse property of logs 

144232
+=++ xxx    Move terms to one side 

0122
=−− xx     Factor 

0)3)(4( =−+ xx  

x = −4 or x = 3. 
 
Checking our answers, notice that evaluating the original equation at x = −4 would 
result in us evaluating )2ln(− , which is undefined.  That answer is outside the domain 

of the original equation, so it is an extraneous solution and we discard it.  There is one 
solution:  x = 3. 

 
 
More complex exponential equations can often be solved in more than one way.  In the 
following example, we will solve the same problem in two ways – one using logarithm 
properties, and the other using exponential properties. 
 
 
Example 8a 

In 2008, the population of Kenya was approximately 38.8 million, and was growing by 
2.64% each year, while the population of Sudan was approximately 41.3 million and 
growing by 2.24% each year2.  If these trends continue, when will the population of 
Kenya match that of Sudan? 
 
We start by writing an equation for each population in terms of t, the number of years 
after 2008. 

( ) 38.8(1 0.0264)

( ) 41.3(1 0.0224)

t

t

Kenya t

Sudan t

= +

= +
 

 
To find when the populations will be equal, we can set the equations equal 

38.8(1.0264) 41.3(1.0224)t t
=  

 
 

                                                 
2 World Bank, World Development Indicators, as reported on http://www.google.com/publicdata, retrieved 
August 24, 2010 
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For our first approach, we take the log of both sides of the equation. 

( ) ( )log 38.8(1.0264) log 41.3(1.0224)t t
=  

 
Utilizing the sum property of logs, we can rewrite each side, 

( ) ( )log(38.8) log 1.0264 log(41.3) log 1.0224t t
+ = +  

 
Then utilizing the exponent property, we can pull the variables out of the exponent 

( ) ( )log(38.8) log 1.0264 log(41.3) log 1.0224t t+ = +  

 
Moving all the terms involving t to one side of the equation and the rest of the terms to 
the other side, 

( ) ( )log 1.0264 log 1.0224 log(41.3) log(38.8)t t− = −  

 
Factoring out the t on the left, 

( ) ( )( )log 1.0264 log 1.0224 log(41.3) log(38.8)t − = −  

 
Dividing to solve for t 

( ) ( )

log(41.3) log(38.8)
15.991

log 1.0264 log 1.0224
t

−
= ≈

−
years until the populations will be equal. 

 
 
Example 8b 

Solve the problem above by rewriting before taking the log. 
 
Starting at the equation  

38.8(1.0264) 41.3(1.0224)t t
=  

 
Divide to move the exponential terms to one side of the equation and the constants to 
the other side 

1.0264 41.3

1.0224 38.8

t

t
=  

 
Using exponent rules to group on the left, 

1.0264 41.3

1.0224 38.8

t

 
= 

 
 

 
Taking the log of both sides 

1.0264 41.3
log log

1.0224 38.8

t    
=         
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Utilizing the exponent property on the left, 

1.0264 41.3
log log

1.0224 38.8
t

   
=   

   
 

 
Dividing gives 

41.3
log

38.8
15.991

1.0264
log

1.0224

t

 
 
 

= ≈
 
 
 

 years 

 
While the answer does not immediately appear identical to that produced using the 
previous method, note that by using the difference property of logs, the answer could be 
rewritten: 

41.3
log

log(41.3) log(38.8)38.8

1.0264 log(1.0264) log(1.0224)
log

1.0224

t

 
 

− 
= =

− 
 
 

 

 
 
While both methods work equally well, it often requires fewer steps to utilize algebra 
before taking logs, rather than relying solely on log properties. 
 
 

Try it Now  
3.  Tank A contains 10 liters of water, and 35% of the water evaporates each week.  Tank 

B contains 30 liters of water, and 50% of the water evaporates each week.  In how 
many weeks will the tanks contain the same amount of water?  

 
 

Important Topics of this Section 

Inverse  

Exponential 

Change of base 

Sum of logs property 

Difference of logs property 

Solving equations using log rules 
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Try it Now Answers 

1.  ( ) ( ) ( ) 52log32log48log 5

222 ===⋅  

 

2. )2log(1)4log( 2
++=− xx  Move both logs to one side 

( ) ( ) 12log4log 2
=+−− xx    Use the difference property of logs 

1
2

4
log

2

=








+

−

x

x
   Factor 

1
2

)2)(2(
log =









+

−+

x

xx
  Simplify 

( ) 12log =−x    Rewrite as an exponential 

2101
−= x     Add 2 to both sides 

12=x  

 

3.  Tank A:  ttA )35.01(10)( −= .  Tank B:  ttB )50.01(30)( −=  

Solving A(t) = B(t), 
tt )5.0(30)65.0(10 =   Using the method from Example 8b 

10

30

)5.0(

)65.0(
=

t

t

   Regroup 

3
5.0

65.0
=








t

   Simplify 

( ) 33.1 =
t

    Take the log of both sides 

( )( ) ( )3log3.1log =
t

  Use the exponent property of logs 

( ) ( )3log3.1log =t    Divide and evaluate 

( )
( )

1874.4
3.1log

3log
≈=t  weeks 
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Section 4.4 Exercises 

 
Simplify to a single logarithm, using logarithm properties. 

1. ( ) ( )3 3log 28 log 7−     2. ( ) ( )3 3log 32 log 4−   

3. 3

1
log

7

 
−  

 
     4. 4

1
log

5

 
−  

 
     

5. ( )3 3

1
log log 50

10

 
+ 

 
    6. ( )4 4log 3 log (7)+  

7. ( )7

1
log 8

3
     8.  ( )5

1
log 36

2
 

9. ( ) ( )4 5log 2 log 3x x+    10. ( ) ( )2 3ln 4 ln 3x x+    

11. ( ) ( )9 2ln 6 ln 3x x−     12. ( ) ( )4log 12 log 4x x−    

13. ( ) ( )2log 3log 1x x+ +     14. ( ) ( )23log 2 logx x+  

15. ( ) ( ) ( )
1

log log 3log
2

x y z− +    16. ( ) ( ) ( )
1

2 log log log
3

x y z+ −  

 
Use logarithm properties to expand each expression. 

17. 
15 13

19
log

x y

z

 
 
 

    18. 
2 3

5
log

a b

c

 
 
 

 

19. 
2

4 5
ln

a

b c

−

−

 
 
 

     20. 
2 3

5
ln

a b

c

−

−

 
 
 

 

21. ( )3 4log x y
−     22. ( )3 2log x y

−  

23. ln
1

y
y

y

 
  − 

     24. 
2

ln
1

x

x

 
 

− 
 

25. ( )2 3 2 53log x y x y     26. ( )3 4 3 97log x y x y  

 
 



 Section 4.4 Logarithmic Properties 299 
 

Solve each equation for the variable. 

27. 4 7 9 64 3x x− −
=     28. 2 5 3 72 7x x− −

=  

29. ( ) ( )17 1.14 19 1.16
x x

=    30. ( ) ( )20 1.07 8 1.13
x x

=  

31. 0.12 0.085 10t t
e e=     32. 0.09 0.143 t t

e e=  

33. ( )2log 7 6 3x + =      34. 
3log (2 4) 2x + =  

35. ( )2ln 3x 3 1+ =      36. ( )4ln 5 5 2x + =  

37. ( )3log 2x =     38. ( )5log 3x =  

39. ( ) ( )log log 3 3x x+ + =     40. ( ) ( )log 4 log 9x x+ + =  

41. ( ) ( )log 4 log 3 1x x+ − + =    42. ( ) ( )log 5 log 2 2x x+ − + =  

43. ( )2

6 6log log ( 1) 1x x− + =    44. 2

3 3log ( ) log ( 2) 5x x− + =  

45. ( ) ( ) ( )log 12 log log 12x x+ = +   46. ( ) ( ) ( )log 15 log log 15x x+ = +  

47. ( ) ( ) ( )ln ln 3 ln 7x x x+ − =    48. ( ) ( ) ( )ln ln 6 ln 6x x x+ − =  
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Solutions to Selected Exercises 

Chapter 1 

Section 1.1 

1. a. ( )40 13f =    

    b. 2 Tons of garbage per week is produced by a city with a population of 5,000. 
3. a. In 1995 there are 30 ducks in the lake  
    b. In 2000 there are 40 ducks in the late 
5. a ,b, d, e   7. a, b   9. a, b, d 

11. b    13. b, c, e, f  15. ( ) ( )1 1,   3 1f f= =  

17. ( ) ( )2 4,    3 2g g= − =     19. ( ) ( )3 53,   2 1f f= =  

  ( )2f −   ( )1f −   ( )0f   ( )1f   ( )2f  

21. 8 6 4 2 0 

23.  49 18 3 4 21 

25.  4 -1 0 1 -4 

27. 4 4.414 4.732 5 5.236 

29. -4 -6 -6 -4 0 

31.  5 DNE -3 -1 -1/3 

33.  1/4 1/2 1 2 4 

 

35. a. -6  b.-16    37. a. 5  b. 
5

3
−  

39. a. iii  b. viii c. I d. ii e. vi f. iv g. v  h. vii 

41. a. iv b. ii c. v d. I e. vi f. iii 

43. 36)9()3( 22 =++− yx  

45. (a) (b)  (c) 

                

47a.  t  b. a  c. r  d. L: (c, t)  and K: (a, p) 
 
 
 
 
 

h
ei

g
h

t 

age 

h
ei

g
h

t 
 o

f 
h

ea
d
 

time 

p
o

st
a

g
e 

weight 
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Section 1.2 

1. D: [-5, 3)     R: [0,2]  3. D: 2 8t< ≤   R: ( )6 8g t≤ <  

5. D: [0,4]  R: [-3, 0]  7. ),2[ ∞   9. ]3,(−∞             

11. ( )∞−∞ ∪ ,6 ) 6,(     13. 







∞−−−∞ ∪ ,

2

1
 ) 

2

1
,(    

15. [ ) ( )4, 4   4,− ∞∪     17. ( ) ( )∞−−−∞ ∪∪ ,2 2,11 ) 11,(  

 

 ( )1f −  ( )0f  ( )2f  ( )4f  

19.  -4 6 20 34 

21. -1 -2 7 5 

23.  -5 3 3 16 

 

25. ( )








≤<−

≤<−−

−≤≤−

=   

 42 4

212

1 62

xif

xif

xif

xf   27. ( ) 2

3          0

         0

if x
f x

x if x

≤
= 

>
 

29. ( )







≥

<
=

0         

0          
1

xifx

xif
xxf   

31.  33.   

35.  

 

Section 1.3 

1. a) 6 million dollars per year   b) 2 million dollars per year    

3. 
3

1

14

54
−=

−

−
    5. 6 
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7. 27     9. 
27

352
 

11. 4b+4    13. 3 

15. 
16913

1

+
−

h
   17. 2399 hh ++  

19. hx 24 +  

21.  Increasing: ( )2,5.1− .  Decreasing: ( ) ( )∞∪−∞− ,25.1,  

23. Increasing: ( ) ( )4,31, ∪∞− .  Decreasing: ( ) ( )∞∪ ,43,1  

25.  Increasing, concave up  27.  Decreasing, concave down 

29. Decreasing, concave up  31. Increasing, concave down 

33. Concave up ( )1,∞− .  Concave down ( )∞,1 .  Inflection point at (1, 2) 

35. Concave down ( ) ( )∞∪∞− ,33,  

37. Local minimum at (3, -22).   

Inflection points at (0,5) and (2, -11). 

Increasing on ( )∞,3 .  Decreasing ( )3,∞−  

Concave up ( ) ( )∞∪∞− ,20, .  Concave down ( )2,0  

 

39.  Local minimum at (-2, -2) 

Decreasing ( )2,3 −−  

Increasing ( )∞− ,2  

Concave up ( )∞− ,3  

 

 

41. Local minimums at (-3.152, -47.626)  

    and (2.041, -32.041) 

Local maximum at (-0.389, 5.979) 

Inflection points at (-2, -24) and (1, -15) 

Increasing ( ) ( )∞∪−− ,041.2389.0,152.3  

Decreasing ( ) ( )041.2,389.0152.3, −∪−∞−  

Concave up ( ) ( )∞∪−∞− ,12,  

Concave down ( )1,2−  
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Section 1.4 

1. 36))0(( =gf .  57))0(( −=fg  

3. 4))0(( =gf .  4))0(( =fg  

5. 4 7. 9 9. 4 11. 7 13. 0 15. 4 17. 3 19. 2  

21. ( )( )
7

x
f g x =    ( )( ) 7 36g f x x= −  

23. ( )( ) 3+= xxgf    ( )( ) 2 3g f x x= +  

25. ( )( ) 5 1f g x x= +    ( )( ) 5 1g f x x= +  

27. ( )( )( ) ( )
4

6 6f g h x x= − +  

29. b     31a. ( )( )
( )

3
3 10 20

4

t
r V t

π

+
=  b. 4.609in 

33. ( )∞,0   35. ( )∞∪







∪







∞− ,11,

3

1

3

1
,    37. [ ) ( )∞∪ ,55,2  

39. ( ) ( ) 22, g x x f x x= + =   41. ( ) ( )
3

, 5f x g x x
x

= = −  

43. ( ) ( )3 , 2f x x g x x= + = − , or ( ) ( ) 2, 3 −=+= xxgxxf  

45a.  ( )( ) ( ) ( ) ( )2
f f x a ax b b a x ab b= + + = + +       

     b. ( )
16

8
6 

+
−= xxg  or ( )

61

8
6 

−
−−= xxg  

47a. ( )( )

2

2

70
60

10
60

s

C f s
s

 
 
 =
 

+  
 

  b. ( )( )
( )

( )

2

2

70 60

10 60

h
C g h

h
=

+
  

     c. ( )( )
2

2

5280 70

3600 10

m
v C m

m

 
=  

+ 
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Section 1.5 

1. Horizontal shift right 49 units  3. Horizontal shift left 3 units 

5. Vertical shift up 5 units   7. Vertical shift down 2 units 

9. Horizontal shift right 2 units, Vertical shift up 3 units 

11. ( ) 12  12 ++=++ xxf   13. ( ) 4
3

1
 43 −

−
=−−

x
xf  

15. ( ) ( ) ( ) ( )1 ,      1g x f x h x f x= − = +  

17.   19.  

21.       23.  

 

25. 3 2y x= − −    27. 3 1y x= + −   29. y x= −   

   

31.  

33a. ( ) 6 xf x −− − = −   b. ( ) 22 3 6 3xf x +− + − = − −  

35. ( )
2

1 2y x= − + +    37. 1y x= − +  

39a. Even b. Neither c. Odd 
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41. Reflect f(x) about the x-axis  

43. Vertically stretch y values by 4 

45. Horizontally compress x values by 1/5  

47. Horizontally stretch x values by 3 

49. Reflect f(x) about the y-axis and vertically stretch y values by 3 

51. ( )4 4f x x− = −  

53. ( )
( )

2

1 1
2 3 3

3 3 2
f x

x
+ − = −

+
 

55. ( )( ) ( )( ) 152152
2

+−=+− xxf  

57. Horizontal shift left 1 unit, vertical stretch y values by 4, vertical shift down 5 units    

  becomes   

59. Horizontal shift right 4 units, vertical stretch y values by 2, reflect over x axis, 
vertically shift up 3 units. 

 becomes       

61. Vertically compress y values by ½  
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 becomes  

63. Horizontally stretch x values by 3, vertical shift down 3 units 

   becomes    

65. Reflected over the y axis, horizontally shift right 4 units  ( ) ( )4a x x= − −  

  becomes  

67. This function is increasing on ),1( ∞−  and decreasing on )1,( −−∞  

69. This function is decreasing on )4,(−∞  

71. This function is concave down on ),3( ∞− and concave up on )3,( −−∞  

73. This function is concave up everywhere 

75. ( )xf −    77. ( )xf3    79. ( )xf −2  

81. 







xf

2

1
2    83. ( ) 22 −xf    85. ( ) 31 ++− xf  

87. ( )
2

2 2 3y x= − + +   89. ( )
3

1
1 2

2
y x

 
= − + 
 

 91. ( ) 122 ++= xy  
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93. 
( )

2

1
3

2
y

x

−
= +

−
 95. 2 1 3y x= − + +  97. ( ) 12

2

1
3 +−−= xy

99. ( )







−>+−

−≤++
=

2     32
2

1
 2    1)3( 2

xifx

xifx
xf

101. ( )








>+−

≤≤−++−

−<

=  

1 12

124)1(2

21

3

2

xifx

xifx

xif

xf

103a. : 3.5 6Domain x≤ ≤ d. : 9 7Range y− ≤ ≤
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Chapter 3 

Section 3.1 

1. As ∞→∞→ )(,   xfx As ∞→−∞→ )(,   xfx  

3. As ∞→∞→ )(,   xfx As ( ) −∞→−∞→ xfx ,  

5. As ( ) −∞→∞→ xfx ,    As ( ) −∞→−∞→ xfx ,   

7. As ( ) −∞→∞→ xfx ,    As ∞→−∞→ )(,  xfx

9. 7th Degree, Leading coefficient 4
11. 2nd Degree, Leading coefficient -1
13. 4th Degree, Leading coefficient -2
15. 3rd Degree, Leading coefficient 6

17. As ( ) −∞→∞→ xfx ,    As ( ) −∞→−∞→ xfx ,   

19. As ∞→∞→ )(,   xfx As ∞→−∞→ )(,   xfx

21. intercepts: 5, turning points: 4 23. 3
25. 5 27. 3 29. 5
31. Horizontal Intercepts (1,0), (-2, 0), (3, 0)   Vertical Intercept (0, 12) 
33. Horizontal Intercepts (1/3, 0) (-1/2, 0)  Vertical Intercept (0, 2) 
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Section 3.3 

C(t) C, 
intercepts 

t, intercepts 

1. (0,48) (4,0), (-1,0), (6,0) 

3. (0,0) (0,0), (2,0), (-1,0) 

5. (0,0) (0,0), (1,0), (3,0) 

7. (-1.646, 0) (3.646, 0) (5,0)

9. As ( ) ( ) −∞→−∞→∞→∞→ thttht ,   ,   

11. As ( ) ( ) −∞→−∞→−∞→∞→ tpttpt ,   ,   

13. 15. 

17. 
19. (3, )∞ 21. ( ) ( )3,12, ∪−∞−
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23. [3.5,6] 25. ( ] [ ),1 4,−∞ ∞∪
27. [ )∞∪−− ,3]2,2[ 29. ( ) ( ), 4 4, 2 (2, )−∞ − − ∞∪ ∪

31. ( )( )( )
2

2 1 3
3

y x x x= − + − − 33. ( ) ( )33)1(
3

1 22 +−−= xxxy

35. ( ) ( )
2 3

15 1 3y x x= − − − 37. ( )( )( )
1

2 1 3
2

y x x x= + − −

39. )2()1( 2 −+−= xxy 41. ( )( )( )( )
1

3 2 2 4
24

y x x x x= − + + − −

43. ( )( )( )2
324

24

1
−++= xxxy 45. ( ) ( )22

32
12

1
−+= xxy

47. ( )( )( )
31

3 2 1
6

y x x x= + + − 49. ( ) ( ) ( ) ( )
21

3 1 2 4
16

y x x x x= − + + − −

51. Base 2.58,  Height 3.336

Section 3.4 

1. 4415)3)(4(=134 2 ++−−+ xxxx  

3. ( )( ) 71)(1218354=1235 22234 ++−−+−+− xxxxxxx

5. 
8

283

8

81

4

27

2

9
3)(2=59 23 +








++−+ xxxx

7. ( ) ( ) 21)(31=123 2 ++−+− xxxx

9. ( ) ( ) 52)2(1=243 2 +−−+−− xxxx

11. ( ) ( )( ) 0422=8 23 ++−++ xxxx

13. ( ) 015)(18
3

5
=251518 2 ++








−−− xxxx  

15. ( ) ( ) 022
2

1
=122 223 ++








++++ xxxxx

17. ( )
4

1

2

5
2

2

1
=132 23 −








−+








−+− xxxxx

19. ( ) ( )( ) 033333=96 2324 +−−+−+− xxxxxx

21. 3)2)(1)((=6116 23 −−−−+− xxxxxx

23. 223 1)(
3

2
3=243 +








−−−+ xxxxx

25. )3)(32)((=632 23 −++−−+ xxxxxx

27. 2

2

234 3)(
2

1
4=94261284 −








−+−+− xxxxxx
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Chapter 4 

Section 4.1 

1. Linear   3. Exponential    5. Neither 

7. ( ) ( )11,000 1.085
t

P t =   9. 47622 Fox 

11. $17561.70   13. ( )6 5
x

y =     15. ( )2000 0.1
x

y =  

17. ( )3 2
x

y =     19. 

3

5 51 1

6 6

x

y

−
   

=    
   

 = ( )2.93 0.699
x
 21. ( )

1
2

8

x
y =  

23.34.32 mg    25. 1.39%; $155,368.09    27. $4,813.55  

29. Annual $7353.84≈             Quarterly $7,469.63≈   Monthly $7,496.71≈  

     Continuously $7,510.44≈  

31. 3.03%    33. 7.4 years  

35a. ( ) ( ) ( )1.113 1.046
t

w t =  b. $1.11 c. Below what the model predicts $5.70≈  

Section 4.2 

1. B  3.  A   5. E   7. D   9. C 

11.  13.  15.  
 

17. 4 4xy = +    19. 24xy +=     21. 4xy = −  

23. As ( )    x f x→ ∞ → −∞ .  As ( )   1 x f x→ −∞ → −  

25. As ( )     2x f x→ ∞ → −  As ( )    x f x→ −∞ → ∞  

27. As ( )    2x f x→ ∞ →  As ( ) ∞→−∞→ xfx      

29. 1)2(412 2 +−=+−= + xx
y   31. 3)2(2 +−= − x

y     

33. ( ) 732 +−=
x

y    35. 4
2

1
2 −








=

x

y  

 

Section 4.3 

1. 4m
q=     3. c

a b=     5.10t
v=  

7. n
e w=    9. 4log ( )y x=    11. dkc =)(log  

13. log( )b a=    15. ( )ln h k=     17. 9 

19. 1/8    21. 1000   23. 2
e  

25. 2    27. -3    29. ½ 
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31. 4 33. -3 35. -2

37. -1.398 39. 2.708 41. 
( )
( )

 6397.1
5log

14log
≈

43. 
( )

1
log

15
1.392

log 7

 
 
  ≈ −  45. 

( )ln 17
0.567

5
≈ 47. 

( )
( )

078.2
4

5
3log

38log

≈

+

 

49. 
( )

( )

log 5
54.449

log 1.03
≈ 51. 

( )
335.8

04.1log3

3

8
log

≈










 53. 

1
ln

5
13.412

0.12

 
 
  ≈

−

55. 

5
log

8
0.678

1
log

2

 
 
  ≈
 
 
 

 57. ( ) 0.0943300 t
f t e

−= 59. ( ) 0.0392210 t
f t e=

61. ( ) ( )150 1.0618
t

f t = 63. ( ) ( )50 0.98807
t

f t = 65. During the year 2013

67. During the year 2074 69. 34 hours≈ 71. 13.532 years

Section 4.4 

1. ( )3log 4 3. ( )7log3 5. ( )5log3 7. ( )2log 7 9. ( )96log x

11. ( )7ln 2x 13. ( )( )32log 1x x + 15. 














y

xz
3

log  

17. ( ) ( ) ( )15log 13log 19 logx y z+ − 19. ( ) ( ) ( )2 ln 4 ln 5lna b c− + −

21. ( )
3

log 2log( )
2

x y− 23. ( ) ( ) ( )( )
1

ln ln ln 1
2

y y y+ − −

25. ( ) ( )yx log
3

14
log

3

8
+

27. 0.717x ≈ − 29. 395.6−≈x 31. 17.329t ≈

33. 
2

7
x = 35. 0.123x ≈ 37. 4.642x ≈

39. 30.158x ≈ 41. 2.889x ≈ − . 43. 6.873x ≈ or 873.0−≈x

45. 
12

1.091
11

x = ≈  47. 10x =
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1.1 Solutions to Exercises 

1. (a)   𝑓(40) = 13, because the input 40 (in thousands of people) gives the output 13 (in tons of 

garbage) 

    (b)   𝑓(5) = 2, means that 5000 people produce 2 tons of garbage per week. 

3. (a)   In 1995 (5 years after 1990) there were 30 ducks in the lake. 

    (b)   In 2000 (10 years after 1990) there were 40 ducks in the lake. 

5. Graphs (a) (b) (d) and (e) represent y as a function of x because for every value of x there is 

only one value for y. Graphs (c) and (f) are not functions because they contain points that have 

more than one output for a given input, or values for x that have 2 or more values for y. 

7. Tables (a) and (b) represent y as a function of x because for every value of x there is only one 

value for y. Table (c) is not a function because for the input x=10, there are two different outputs 

for y. 

9. Tables (a) (b) and (d) represent y as a function of x because for every value of x there is only 

one value for y. Table (c) is not a function because for the input x=3, there are two different 

outputs for y.  

11. Table (b) represents y as a function of x and is one-to-one because there is a unique output for 

every input, and a unique input for every output. Table (a) is not one-to-one because two 

different inputs give the same output, and table (c) is not a function because there are two 

different outputs for the same input x=8. 

13. Graphs (b) (c) (e) and (f) are one-to-one functions because there is a unique input for every 

output. Graph (a) is not a function, and graph (d) is not one-to-one because it contains points 

which have the same output for two different inputs.  

15. (a)   𝑓(1) = 1    (b)   𝑓(3) = 1 

17. (a)   𝑔(2) = 4    (b)   𝑔(−3) = 2 

19. (a)   𝑓(3) = 53    (b)   𝑓(2) = 1 

21. 𝑓(−2) = 4 − 2(−2) = 4 + 4 = 8, 𝑓(−1) = 6, 𝑓(0) = 4, 𝑓(1) = 4 − 2(1) = 4 − 2 =

2, 𝑓(2) = 0 
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23. 𝑓(−2) = 8(−2)2 −  7(−2) +  3 = 8(4) + 14 + 3 = 32 + 14 + 3 = 49, 𝑓(−1) =

18, 𝑓(0) = 3, 𝑓(1) = 8(1)2 −  7 (1) +  3 = 8 − 7 + 3 = 4, 𝑓(2) = 21 

25. 𝑓(−2) = −(−2)3 + 2(−2) = −(−8) − 4 = 8 − 4 = 4, 𝑓(−1) = −(−1)3 + 2(−1) =

−(−1) − 2 = −1, 𝑓(0) = 0, 𝑓(1) = −(1)3 + 2(1) = 1, 𝑓(2) = −4 

27. 𝑓(−2) = 3 + √(−2) + 3 = 3 + √1 = 3 + 1 = 4, 𝑓(−1) = √2 + 3 ≈ 4.41 , 𝑓(0) = √3 +

3 ≈ 4.73, 𝑓(1) = 3 + √(1) + 3 = 3 + √4 = 3 + 2 =  5, 𝑓(2) = √5 + 3 ≈ 5.23 

29. 𝑓(−2) = ((−2) − 2)((−2) + 3) = (−4)(1) = −4, 𝑓(−1) = −6, 𝑓(0) = −6, 𝑓(1) =

((1) − 2)((1) + 3) = (−1)(4) = −4, 𝑓(2) = 0 

31. 𝑓(−2) =
(−2)−3

(−2)+1
=

−5

−1
= 5, 𝑓(−1) = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑓(0) = −3, 𝑓(1) = −1, 𝑓(2) = −1/3 

33. 𝑓(−2) = 2−2 =
1

22 =
1

4
, 𝑓(−1) =

1

2
, 𝑓(0) = 1, 𝑓(1) = 2, 𝑓(2) = 4 

35. Using 𝑓(𝑥) = 𝑥2 + 8𝑥 − 4: 𝑓(−1) = (−1)2 + 8(−1) − 4 = 1 − 8 − 4 = −11; 𝑓(1) =

12 + 8(1) − 4 = 1 + 8 − 4 = 5. 

(a)   𝑓(−1) + 𝑓(1) = −11 + 5 = −6 (b)   𝑓(−1) − 𝑓(1) = −11 − 5 = −16 

37. Using 𝑓(𝑡) = 3𝑡 + 5: 

(a)   𝑓(0) = 3(0) + 5 = 5   (b)   3𝑡 + 5 = 0 

              𝑡 = −
5

3
 

39. (a)   𝑦 = 𝑥 (iii. Linear)   (b)   𝑦 = 𝑥3 (viii. Cubic) 

      (c)   𝑦 = √𝑥
3

 (i. Cube Root)  (d)   𝑦 =
1

𝑥
 (ii. Reciprocal) 

      (e)   𝑦 = 𝑥2 (vi. Quadratic)  (f)   𝑦 = √𝑥 (iv. Square Root) 

      (g)   𝑦 = |𝑥| (v. Absolute Value)  (h)   𝑦 =
1

𝑥2 (vii. Reciprocal Squared) 

41. (a)   𝑦 = 𝑥2 (iv.)    (b)   𝑦 = 𝑥 (ii.) 

      (c)   𝑦 = √𝑥 (v.)    (d)   𝑦 =
1

𝑥
 (i.) 

      (e)   𝑦 = |𝑥| (vi.)    (f)   𝑦 = 𝑥3 (iii.) 
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43. (𝑥 − 3)2 + (𝑦 + 9)2 = (6)2 or (𝑥 − 3)2 + (𝑦 + 9)2 = 36 

45.   (a) 

  

(b) 

  

(c)  

  

47. (a)    𝑡     (b)    𝑥 = 𝑎           (c)    𝑓(𝑏) = 0 so 𝑧 = 0.  Then 𝑓(𝑧) = 𝑓(0) = 𝑟. 

       (d)   𝐿 = (𝑐, 𝑡), 𝐾 = (𝑎, 𝑝) 

1.2 Solutions to Exercises 

1. The domain is [−5, 3);  the range is [0, 2] 

h
ei

g
h

t 

age 

Graph (a) 

At the beginning, as age increases, 

height increases. At some point, 

height stops increasing (as a 

person stops growing) and height 

stays the same as age increases. 

Then, when a person has aged, 

their height decreases slightly. 

h
ei

g
h

t 
 o

f 
h

ea
d

 

time 

Graph (b) 

As time elapses, the height of a 

person’s head while jumping on a 

pogo stick as observed from a 

fixed point will go up and down in 

a periodic manner. 

p
o

st
a

g
e 

 

weight of letter 

Graph (c) 

The graph does not pass through 

the origin because you cannot mail 

a letter with zero postage or a letter 

with zero weight. The graph begins 

at the minimum postage and 

weight, and as the weight increases, 

the postage increases. 
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3. The domain is 2 < 𝑥 ≤ 8; the range is 6 ≤ 𝑦 < 8 

5. The domain is 0 ≤ 𝑥 ≤ 4; the range is 0 ≤ 𝑦 ≤ −3 

7. Since the function is not defined when there is a negative number under the square root, 𝑥 

cannot be less than 2 (it can be equal to 2, because √0 is defined). So the domain is 𝑥 ≥ 2. 

Because the inputs are limited to all numbers greater than 2, the number under the square root 

will always be positive, so the outputs will be limited to positive numbers. So the range is 

𝑓(𝑥) ≥ 0. 

9. Since the function is not defined when there is a negative number under the square root, 𝑥 

cannot be greater than 3 (it can be equal to 3, because √0 is defined). So the domain is 𝑥 ≤ 3. 

Because the inputs are limited to all numbers less than 3, the number under the square root will 

always be positive, and there is no way for 3 minus a positive number to equal more than three, 

so the outputs can be any number less than 3. So the range is 𝑓(𝑥) ≤ 3. 

11. Since the function is not defined when there is division by zero, 𝑥 cannot equal 6. So the 

domain is all real numbers except 6, or {𝑥|𝑥 ∊ ℝ, 𝑥 ≠ 6}. The outputs are not limited, so the 

range is all real numbers, or {𝑦 ∊ ℝ}. 

13. Since the function is not defined when there is division by zero, 𝑥 cannot equal −1/2. So the 

domain is all real numbers except −1/2 , or {𝑥|𝑥 ∊ ℝ, 𝑥 ≠ −1/2}. The outputs are not limited, 

so the range is all real numbers, or {𝑦 ∊ ℝ}. 

15. Since the function is not defined when there is a negative number under the square root, 𝑥 

cannot be less than −4 (it can be equal to −4, because √0 is defined). Since the function is also 

not defined when there is division by zero, 𝑥 also cannot equal 4. So the domain is all real 

numbers less than −4 excluding 4, or {𝑥|𝑥 ≥ −4, 𝑥 ≠ 4}. There are no limitations for the 

outputs, so the range is all real numbers, or {𝑦 ∊ ℝ}. 

17. It is easier to see where this function is undefined after factoring the denominator. This gives 

𝑓(𝑥) =
𝑥 −3

(𝑥+11)(𝑥−2)
. It then becomes clear that the denominator is undefined when 𝑥 = −11 and 

when 𝑥 = 2 because they cause division by zero. Therefore, the domain is {𝑥|𝑥 ∊ ℝ, 𝑥 ≠
−11, 𝑥 ≠ 2}. There are no restrictions on the outputs, so the range is all real numbers, or {𝑦 ∊
ℝ}. 

19. 𝑓(−1) = −4; 𝑓(0) = 6; 𝑓(2) = 20; 𝑓(4) = 24 

21. 𝑓(−1) = −1; 𝑓(0) = −2; 𝑓(2) = 7; 𝑓(4) = 5 

23. 𝑓(−1) = −5; 𝑓(0) = 3; 𝑓(2) = 3; 𝑓(4) = 16 

25. 𝑓(𝑥) = {

2 𝑖𝑓 −6 ≤ 𝑥 ≤ −1
−2 𝑖𝑓 −1 < 𝑥 ≤ 2
−4 𝑖𝑓 2 < 𝑥 ≤ 4

 27. 𝑓(𝑥) = {
3 𝑖𝑓 𝑥 ≤ 0

𝑥2 𝑖𝑓 𝑥 > 0
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29.. 𝑓(𝑥) = {

1

𝑥
𝑖𝑓 𝑥 < 0

√𝑥 𝑖𝑓 𝑥 ≥ 0
 

31.   33.     35. 

           

1.3 Solutions to Exercises 

1. (a)   
249−243

2002−2001
=

6

1
= 6 million dollars per year 

    (b)   
249−243

2004−2001
=

6

3
= 2 million dollars per year 

3. The inputs 𝑥 = 1 and 𝑥 = 4 produce the points on the graph: (4,4) and (1,5). The average rate 

of change between these two points is 
5−4

1−4
=

1

−3
=  −

1

3
. 

5. The inputs 𝑥 = 1 and 𝑥 = 5 when put into the function 𝑓(𝑥) produce the points (1,1) and 

(5,25). The average rate of change between these two points is 
25−1

5−1
=

24

4
=  6. 

7. The inputs 𝑥 = −3 and 𝑥 = 3 when put into the function 𝑔(𝑥) produce the points (-3, -82) 

and (3,80). The average rate of change between these two points is 
80−(−82)

3−(−3)
=

162

6
=  27. 

9. The inputs 𝑡 = −1 and 𝑡 = 3 when put into the function 𝑘(𝑡) produce the points (-1,2) and 

(3,54.148̅). The average rate of change between these two points is 
54.148−2

3−(−1)
=

52.148

4
≈ 13. 

11. The inputs 𝑥 = 1 and 𝑥 = 𝑏 when put into the function 𝑓(𝑥) produce the points (1,-3) and 

(𝑏, 4𝑏2 − 7). 𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛: 𝑓(1) = 4(1)2 − 7 = −3, 𝑓(𝑏) = 4(𝑏)2 − 7. The average rate of 
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change between these two points is 
(4𝑏2−7)−(−3)

𝑏−1
=

4𝑏2−7+3 

𝑏−1
=

4𝑏2−4

𝑏−1
=

4(𝑏2−1)

𝑏−1
=

4(𝑏+1)(𝑏−1)

(𝑏−1)
=

4(𝑏 + 1). 

13. The inputs 𝑥 = 2 and 𝑥 = 2 + ℎ when put into the function ℎ(𝑥) produce the points (2,10) 

and (2 + ℎ, 3ℎ + 10). 𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛: ℎ(2) = 3(2) + 4 = 10, ℎ(2 + ℎ) = 3(2 + ℎ) + 4 = 6 +

3ℎ + 4 = 3ℎ + 10. The average rate of change between these two points is  
(3ℎ+10)−10

(2+ℎ)−2
=

3ℎ 

ℎ
=

3. 

15. The inputs 𝑡 = 9 and 𝑡 = 9 + ℎ when put into the function 𝑎(𝑡) produce the points (9,
1

13
) 

and (9 + ℎ,
1

ℎ+13
). 𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛: 𝑎(9) =

1

9+4
=

1

13
, 𝑎(9 + ℎ) =

1

(9+ℎ)+4
=

1

ℎ+13
. The average 

rate of change between these two points is  

1

ℎ+13
−

1

13

(9+ℎ)−9
=

1

ℎ+13
−

1

13
 

ℎ
= (

1

ℎ+13
−

1

13
) (

1

ℎ
) =

1

ℎ(ℎ+13)
−

1

13ℎ
=

1

ℎ2+13ℎ
−

1

13ℎ
(

ℎ

13
+1

ℎ

13
+1

) (𝑡𝑜 𝑚𝑎𝑘𝑒 𝑎 𝑐𝑜𝑚𝑚𝑜𝑛 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟) =
1

ℎ2+13ℎ
− (

ℎ

13
 +1

ℎ2+13ℎ
) =

1− 
ℎ

13
 −1

ℎ2+13ℎ
=

ℎ

13

ℎ2+13ℎ
=

ℎ

13
(

1

ℎ2+13ℎ
) =

ℎ

13(ℎ2+13ℎ)
=

ℎ

13ℎ(ℎ+13)
=

ℎ

13(ℎ+13)
.  

17. The inputs 𝑥 = 1 and 𝑥 = 1 + ℎ when put into the function 𝑗(𝑥) produce the points (1,3) and 

(1 + ℎ, 3(1 + ℎ)3). The average rate of change between these two points is  
3(1+ℎ)3−3

(1+ℎ)−1
=

3(1+ℎ)3−3

ℎ
=

3(ℎ3+3ℎ2+3ℎ+1)−3

ℎ
=

3ℎ3+9ℎ2+9ℎ+3−3

ℎ
=

3ℎ3+9ℎ2+9ℎ

ℎ
= 3ℎ2 + 9ℎ + 9 = 3(ℎ2 + 3ℎ +

3).  

19. The inputs 𝑥 = 𝑥 and 𝑥 = 𝑥 + ℎ when put into the function 𝑓(𝑥) produce the points 

(𝑥, 2𝑥2 + 1) and (𝑥 + ℎ, 2(𝑥 + ℎ)2 + 1). The average rate of change between these two points is  

(2(𝑥+ℎ)2+1)−(2𝑥2+1)

(𝑥+ℎ)−𝑥
=

(2(𝑥+ℎ)2+1)−(2𝑥2+1)

ℎ
=

2(𝑥+ℎ)2+1 −2𝑥2−1

ℎ
=

2(𝑥+ℎ)2−2𝑥2

ℎ
=

2(𝑥2+2ℎ𝑥+ℎ2)−2𝑥2

ℎ
=

2𝑥2+4ℎ𝑥+2ℎ2−2𝑥2

ℎ
=

4ℎ𝑥+2ℎ2

ℎ
= 4𝑥 + 2ℎ = 2(2𝑥 + ℎ).  

21. The function is increasing (has a positive slope) on the interval (−1.5,2), and decreasing (has 

a negative slope) on the intervals (−∞, −1.5) 𝑎𝑛𝑑 (2, ∞). 
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23. The function is increasing (has a positive slope) on the intervals (−∞, 1) 𝑎𝑛𝑑 (3.25,4) and 

decreasing (has a negative slope) on the intervals (1,2.75) 𝑎𝑛𝑑 (4, ∞).  

25. The function is increasing because as 𝑥 increases, 𝑓(𝑥) also increases, and it is concave up 

because the rate at which 𝑓(𝑥) is changing is also increasing. 

27. The function is decreasing because as 𝑥 increases, ℎ(𝑥) decreases. It is concave down 

because the rate of change is becoming more negative and thus it is decreasing. 

29. The function is decreasing because as 𝑥 increases, 𝑓(𝑥) decreases. It is concave up because 

the rate at which 𝑓(𝑥) is changing is increasing (becoming less negative). 

31. The function is increasing because as 𝑥 increases, ℎ(𝑥) also increases (becomes less 

negative). It is concave down because the rate at which ℎ(𝑥) is changing is decreasing (adding 

larger and larger negative numbers). 

33. The function is concave up on the interval (−∞, 1), and concave down on the interval 

(1, ∞). This means that 𝑥 = 1 is a point of inflection (where the graph changes concavity). 

35. The function is concave down on all intervals except where there is an asymptote at 𝑥 ≈ 3. 

37. From the graph, we can see that the function is decreasing on the interval (−∞, 3), and 

increasing on the interval (3, ∞). This means that the function has a local minimum at 𝑥 = 3. We 

can estimate that the function is concave down on the interval (0,2), and concave up on the 

intervals  (2, ∞)and (−∞, 0). This means there are inflection points at 𝑥 = 2 and 𝑥 = 0.  
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39. From the graph, we can see that the function is decreasing on the interval (−3, −2), and 

increasing on the interval  (−2, ∞). This means that the function has a local minimum at 𝑥 =

−2. The function is always concave up on its domain, (-3,∞). This means there are no points of 

inflection. 

 

41. From the graph, we can see that the function is decreasing on the intervals 

(−∞, −3.15) 𝑎𝑛𝑑 (−0.38, 2.04), and increasing on the intervals  

(−3.15, −0.38) 𝑎𝑛𝑑 (2.04, ∞) . This means that the function has local minimums at 𝑥 =

−3.15 𝑎𝑛𝑑 𝑥 = 2.04 and a local maximum at 𝑥 = −0.38. We can estimate that the function is 

concave down on the interval (−2,1), and concave up on the intervals  (−∞, −2) 𝑎𝑛𝑑 (1, ∞). 

This means there are inflection points at 𝑥 = −2 𝑎𝑛𝑑 𝑥 = 1. 

 

1.4 Solutions to Exercises 

1.  𝑓(𝑔(0)) = 4(7) + 8 = 26, 𝑔(𝑓(0)) = 7 − (8)2 = −57  

3.  𝑓(𝑔(0)) = √(12) + 4 = 4, 𝑔(𝑓(0)) = 12 − (2)3 = 4   



Last edited 9/26/17 
 

 

5.  𝑓(𝑔(8)) = 4    7.  𝑔(𝑓(5)) = 9 

9.  𝑓(𝑓(4)) = 4    11.  𝑔(𝑔(2)) = 7 

13.  𝑓(𝑔(3)) = 0    15.  𝑔(𝑓(1)) = 4 

17.  𝑓(𝑓(5)) = 3    19.  𝑔(𝑔(2)) = 2 

21.  𝑓(𝑔(𝑥)) =
1

(
7

𝑥
+6)−6

=
𝑥

7
, 𝑔(𝑓(𝑥)) =

7

(
1

𝑥−6
)

+ 6 = 7𝑥 − 36 

23.  𝑓(𝑔(𝑥)) = (√𝑥 + 2)2 + 1 = 𝑥 + 3, 𝑔(𝑓(𝑥)) = √(𝑥2 + 1) + 2 = √(𝑥2 + 3) 

25.  𝑓(𝑔(𝑥)) = |5𝑥 + 1|, 𝑔(𝑓(𝑥)) = 5|𝑥| + 1 

27.  𝑓(𝑔(ℎ(𝑥))) = ((√𝑥) − 6)
4

+ 6  

29. b 

31. (a)   𝑟(𝑉(𝑡)) = √
3(10+20𝑡)

4𝜋

3
 

(b)   To find the radius after 20 seconds, we evaluate the composition from part (a) at 𝑡 = 20. 

𝑟(𝑉(𝑡)) = √
3(10+20⋅20)

4𝜋

3
≈ 4.609 𝑖𝑛𝑐ℎ𝑒𝑠.   

33.  𝑚(𝑝(𝑥)) = (
1

√𝑥
 )

2

− 4 =
1

𝑥
− 4. This function is undefined when the denominator is zero, or 

when 𝑥 = 0.  The inside function 𝑝(𝑥) is defined for 𝑥 > 0.  The domain of the composition is 

the most restrictive combination of the two:  {𝑥|𝑥 > 0}. 

35. The domain of the inside function, 𝑔(𝑥), is 𝑥 ≠ 1.  The composition is 𝑓(𝑔(𝑥)) =
1

2

𝑥−1
+3

.  

Simplifying that, 𝑓(𝑔(𝑥)) =
1

2

𝑥−1
+3

=
1

2

𝑥−1
+

3(𝑥−1)

𝑥−1

=
1

2

𝑥−1
+

3𝑥−3

𝑥−1

=
1

3𝑥−1

𝑥−1

=
𝑥−1

3𝑥−1
.  This function is 

undefined when the denominator is zero, giving domain 𝑥 ≠
1

3
.  Combining the two restrictions 
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gives the domain of the composition:  {𝑥|𝑥 ≠ 1, 𝑥 ≠
1

3
}.   

In interval notation, (−∞,
1

3
) ∪ (

1

3
, 1) ∪ (1, ∞). 

37.  The inside function 𝑓(𝑥) requires 𝑥 − 2 ≥ 0, giving domain 𝑥 ≥ 2.  The composition is 

𝑔(𝑓(𝑥)) =
2

(√𝑥−2)
2

−3
=

2

𝑥−2−3
=

2

𝑥−5
, which has the restriction 𝑥 ≠ 5.  The domain of the 

composition is the combination of these, so values larger than or equal to 2, not including 5: 

{𝑥|2 ≤ 𝑥 < 5 𝑜𝑟 𝑥 > 5}, or [2,5) ∪ (5, ∞). 

39.  𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = 𝑥 + 2  41.  𝑓(𝑥) =
3

𝑥
, 𝑔(𝑥) = 𝑥 − 5 

43.  𝑓(𝑥) = 3 + 𝑥, 𝑔(𝑥) = √𝑥 − 2 

45.  (a)   𝑓(𝑥) = 𝑎𝑥 + 𝑏, so 𝑓(𝑓(𝑥)) = 𝑎(𝑎𝑥 + 𝑏) + 𝑏, which simplifies to a2x + 2b. 𝑎 and 𝑏 

are constants, so 𝑎2 and 2𝑏 are also constants, so the equation still has the form of a linear 

function. 

       (b)   If we let 𝑔(𝑥) be a linear function, it has the form 𝑔(𝑥) = 𝑎𝑥 + 𝑏. This means that 

𝑔(𝑔(𝑥)) = 𝑎(𝑎𝑥 + 𝑏) + 𝑏. This simplifies to 𝑔(𝑔(𝑥)) = 𝑎2𝑥 + 𝑎𝑏 + 𝑏. We want 𝑔(𝑔(𝑥)) to 

equal 6𝑥 − 8, so we can set the two equations equal to each other:  𝑎2𝑥 + 𝑎𝑏 + 𝑏 = 6𝑥 − 8. 

Looking at the right side of this equation, we see that the thing in front of the x has to equal 6. 

Looking at the left side of the equation, this means that 𝑎2 = 6. Using the same logic, 𝑎𝑏 + 𝑏 =

−8. We can solve for , 𝑎 = √6. We can substitute this value for 𝑎 into the second equation to 

solve for 𝑏: (√6)𝑏 + 𝑏 = −8  𝑏(√6 + 1) = −8  𝑏 = −
8

√6+1
. So, since 𝑔(𝑥) = 𝑎𝑥 + 𝑏, 

𝑔(𝑥) = √6𝑥 − 
8

√6+1
. Evaluating 𝑔(𝑔(𝑥)) for this function gives us 6x-8, so that confirms the 

answer. 

47.  (a)   A function that converts seconds 𝑠 into minutes 𝑚 is  𝑚 = 𝑓(𝑠) =
𝑠

60
 . 𝐶(𝑓(𝑠)) =

70(
𝑠

60
)2

10+(
𝑠

60
)

2  ; this function calculates the speed of the car in mph after s seconds.   

(b)  A function that converts hours ℎ into minutes 𝑚 is  𝑚 = 𝑔(ℎ) = 60ℎ. 𝐶(𝑔(ℎ)) =
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70(60ℎ)2

10+(60ℎ)2
 ; this function calculates the speed of the car in mph after h hours.   

(c)   A function that converts mph 𝑠 into ft/sec 𝑧 is  𝑧 = 𝑣(𝑠) = (
5280

3600
) 𝑠 which can be reduced to 

𝑣(𝑠) = (
22

15
) 𝑠. 𝑣(𝐶(𝑚)) = (

22

15
) (

70𝑚2

10+𝑚2) ; this function converts the speed of the car in mph to 

ft/sec.   

1.5 Solutions to Exercises 

1. Horizontal shift 49 units to the right 3. Horizontal shift 3 units to the left 

5. Vertical shift 5 units up   7. Vertical shift 2 units down 

9. Horizontal shift 2 units to the right and vertical shift 3 units up 

11. 𝑓(𝑥) = √(𝑥 + 2) + 1   13. 𝑓(𝑥) =
1

(𝑥−3)
− 4 

15. 𝑔(𝑥) = 𝑓(𝑥 − 1), ℎ(𝑥) = 𝑓(𝑥) + 1 

17.      19. 

  

     

 

21. 𝑓(𝑡) = (𝑡 + 1)2 − 3  as a transformation of 𝑔(𝑡) = 𝑡2    

 

𝑓(𝑥) 

 

𝑔(𝑥) 

 

 

 

 

 

𝑤(𝑥) 

 

𝑓(𝑥) 

 

𝑔(𝑡) = 𝑡2 

 

 

𝑓(𝑡) = (𝑡 + 1)2 − 3 
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23. 𝑘(𝑥) = (𝑥 − 2)3 − 1  as a transformation of 𝑓(𝑥) = 𝑥3        

 

   

25.     𝑓(𝑥) = |𝑥 − 3| − 2   27.     𝑓(𝑥) = √𝑥 + 3 − 1 

29.     𝑓(𝑥) = −√𝑥 

31.       

   

 

33. (a)   𝑓(𝑥) =  −6−𝑥   (b)   𝑓(𝑥) =  −6𝑥+2 − 3 

𝑘(𝑥) = (𝑥 − 2)3 − 1 

 

𝑓(𝑥) = 𝑥3 

 

 

𝑓(𝑥) = 2𝑥  

 

𝑓(𝑥) = −2𝑥 + 1 
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35.  𝑓(𝑥) =  −(𝑥 + 1)2 + 2   37.   𝑓(𝑥) =  √−𝑥 + 1 

39.   (a)   even  (b)   neither  (c)   odd 

41.  the function will be reflected over the x-axis 

43.  the function will be vertically stretched by a factor of 4 

45. the function will be horizontally compressed by a factor of  
1

5
 

47.  the function will be horizontally stretched by a factor of 3 

49.  the function will be reflected about the y-axis and vertically stretched by a factor of 3 

51.  𝑓(𝑥) = |−4𝑥|    53. 𝑓(𝑥) =
1

3(𝑥+2)2 − 3 

55. 𝑓(𝑥) = (2[𝑥 − 5])2 + 1 = (2𝑥 − 10)2 + 1 

57.  𝑓(𝑥) = 𝑥2 will be shifted to the left 1 unit, vertically stretched by a factor of 4, and shifted 

down 5 units.  

      

 

59.  ℎ(𝑥) = |𝑥|  will be shifted right 4 units vertically stretched by a factor of 2, reflected 

about the x-axis, and shifted up 3 units.   

        
 

𝑓(𝑥) = 𝑥2 

 

𝒇(𝒙) = 4(𝑥 + 1)2 − 5 

 ℎ(𝑥) = −2|𝑥 − 4| + 3 

 ℎ(𝑥) = |𝑥| 
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61.  𝑚(𝑥) = 𝑥3  will be vertically compressed by a factor of  
1

2
.   

        

 

 

63.  𝑝(𝑥) = 𝑥2  will be stretched horizontally by a factor of 3, and shifted down 3 units.   

             

65.  𝑎(𝑥) = √𝑥  will be shifted left 4 units and then reflected about the y-axis.    

                 

 

67.  the function is decreasing on the interval 𝑥 < −1 and increasing on the interval 𝑥 > −1 

 𝑚(𝑥) = 𝑥3 

 

 𝑚(𝑥) =
1

2
𝑥3 

 

 𝑝(𝑥) = 𝑥3 

 

 𝑝(𝑥) = (
1

3
𝑥)3 − 3 

 

 𝑎(𝑥) = √𝑥 
 𝑎(𝑥) = √−𝑥 + 4 
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69.  the function is decreasing on the interval 𝑥 ≤ 4 

71. the function is concave up on the interval 𝑥 < −1 and concave down on the interval 𝑥 >

−1 

73. the function is always concave up. 

75.  𝑓(−𝑥) 77. 3𝑓(𝑥) 

79.    2𝑓(−𝑥) 81.  2𝑓 (
1

2
𝑥) 

83.   2𝑓(𝑥) − 2 85. −𝑓(𝑥) + 2 

87. 𝑓(𝑥) = −(𝑥 + 2)2 + 3 89.  𝑓(𝑥) =
1

2
(𝑥 + 1)3 + 2 

91.  𝑓(𝑥) = √2(𝑥 + 2) + 1 93. 𝑓(𝑥) = −
1

(𝑥−2)2 + 3 

95. 𝑓(𝑥) = −|𝑥 + 1| + 3 97. 𝑓(𝑥) = −√𝑥 − 2
3

+ 1 

99.  𝑓(𝑥) = {
(𝑥 + 3)2 + 1 𝑖𝑓 𝑥 ≤ −2

−
1

2
|𝑥 − 2| + 3 𝑖𝑓 𝑥 > −2

 

101. 𝑓(𝑥) = {

1 𝑖𝑓 𝑥 < −2

−2(𝑥 + 1)2 + 4 𝑖𝑓 − 2 ≤ 𝑥 ≤ 1

√𝑥 − 2
3

+ 1 𝑖𝑓 𝑥 > 1

 

103. (a)   With the input in factored form, we first apply the horizontal compression by a factor 

of ½, followed by a shift to the right by three units.  After applying the horizontal 

compression, the domain becomes 
1

2
≤ 𝑥 ≤ 3.  Then we apply the shift, to get a domain of 

{𝑥|3
1

2
≤ 𝑥 ≤ 6}. 

 (b)   Since these are horizontal transformations, the range is unchanged. 

 (c)   These are vertical transformations, so the domain is unchanged. 

 (d)   We first apply the vertical stretch by a factor of 2, followed by a downward shift of 

three units.  After the vertical stretch, the range becomes −6 ≤ 𝑦 ≤ 10.  Next, we apply 

the shift to get the final domain {𝑦|−9 ≤ 𝑦 ≤ 7}.  

(e)   The simplest solution uses a positive value of B.  The new domain is an interval of 

length one. Before, it was an interval of length 5, so there has been a horizontal 

compression by a factor of 1/5.  Therefore, B = 5.  If we apply this horizontal compression 

to the original domain, we get 
1

5
≤ 𝑥 ≤

6

5
.  To transform this interval into one that starts at 

8, we must add 7
4

5
=

39

5
.  This is our rightward shift, so 𝑐 =

39

5
. 
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(f)   The simplest solution uses a positive value of A.  The new range is an interval of length 

one.  The original range was an interval of length 8, so there has been a vertical 

compression by a factor of 1/8.  Thus, we have 𝐴 =
1

8
.  If we apply this vertical 

compression to the original range we get =
3

8
≤ 𝑦 ≤

5

8
.  Now, in order to get an interval that 

begins at 0, we must add 3/8.  This is a vertical shift upward, and we have 𝐷 =
3

8
. 
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3.1  Solutions to Exercises 

1.   (a)   𝑓(𝑥) will approach +∞ as 𝑥 approaches ∞. 

      (b)   𝑓(𝑥) will still approach +∞ as 𝑥 approaches -∞, because any negative integer 𝑥 will 

become positive if it is raised to an even exponent, in this case, 𝑥4 

3.   (a)   𝑓(𝑥) will approach +∞ as 𝑥 approaches ∞. 

      (b)   𝑓(𝑥) will approach -∞ as 𝑥 approaches -∞, because 𝑥 is raised to an odd power, in this 

case, 𝑥3. 

5.   (a)   𝑓(𝑥) will approach -∞ as 𝑥 approaches ∞, because every number is multiplied by −1. 

      (b)   𝑓(𝑥) will approach -∞ as 𝑥 approaches -∞, since any negative number raised to an even 

power (in this case 2) is positive, but when it’s multiplied by −1, it becomes negative. 

7.   (a)   𝑓(𝑥) will approach -∞ as 𝑥 approaches ∞, because any positive number raised to any 

power will remain positive, but when it’s multiplied by −1, it becomes negative. 

      (b) 𝑓(𝑥) will approach ∞ as 𝑥 approaches -∞, because any negative number raised to an odd  

power will remain negative, but when it’s multiplied by −1, it becomes positive. 

9.   (a)   The degree is 7. 

      (b)  The leading coefficient is 4. 

11. (a)   The degree is 2. 

      (b)  The leading coefficient is -1. 

13. (a)   The degree is 4. 

      (b)  The leading coefficient is -2. 

15. (a)   (2𝑥 + 3)(𝑥 − 4)(3𝑥 + 1) = (2𝑥2 − 5𝑥 − 12)(3𝑥 + 1) = 6𝑥3 − 13𝑥2 − 41𝑥 − 12 

      (b)  The leading coefficient is 6. 

      (c) The degree is 3. 

17. (a)   The leading coefficient is negative, so as 𝑥 →  +∞ the function will approach −∞. 

      (b)  The leading coefficient is negative, and the polynomial has even degree so as 𝑥 →  −∞ 

the function will approach −∞. 

19. (a)   The leading coefficient is positive, so as 𝑥 →  +∞, the function will approach +∞. 

      (b)  The leading coefficient is positive, and the polynomial has even degree so as 𝑥 →  −∞, 

the function will approach +∞. 

21. (a)   Every polynomial of degree 𝑛 has a maximum of 𝑛 𝑥-intercepts. In this case 𝑛 = 5 so 

we get a maximum of five 𝑥-intercepts.  

      (b)  The number of turning points of a polynomial of degree 𝑛 is 𝑛 − 1. In this case 𝑛 = 5 so 

we get four turning points. 
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23. Knowing that an  𝑛𝑡ℎ degree polynomial can have a maximum of 𝑛 − 1 turning points we get

that this function with two turning points could have a minimum possible degree of three. 

25. Knowing that an  𝑛𝑡ℎ degree polynomial can have a maximum of 𝑛 − 1 turning points we get

that this function with four turning points could have a minimum possible degree of five. 

27. Knowing that an  𝑛𝑡ℎ degree polynomial can have a maximum of 𝑛 − 1 turning points we get

that this function with two turning points could have a minimum possible degree of three. 

29. Knowing that an  𝑛𝑡ℎ degree polynomial can have a maximum of 𝑛 − 1 turning points we get

that this function with four turning points could have a minimum possible degree of five. 

31. (a) To get  our vertical intercept of our function we plug in zero for 𝑡 we get 𝑓(0) =  2((0) −

1)((0) + 2)((0) − 3) = 12. Therefore our vertical intercept is (0,12) 

      (b) To get our horizontal intercepts when our function is a series of products we look for 

when we can any of the products equal to zero. For 𝑓(𝑡) we get 𝑡 = −2, 1, 3. Therefore our 

horizontal intercepts are (−2,0), (1,0) and (3,0). 

33. (a) To get  our vertical intercept of our function we plug in zero for 𝑛 we get 𝑔(0) =

 −2((3(0) − 1)(2(0) + 1) = 2. Therefore our vertical intercept is (0,2) 

      (b) To get our horizontal intercepts when our function is a series of products we look for 

when we can any of the products equal to zero. For 𝑔(𝑛) we get 𝑛 =
1

3
,

−1

2
. Therefore our

horizontal intercepts are  (
1

3
, 0) and (

−1

2
, 0). 
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3.3 Solutions to Exercises 

1 - 5 To find the C intercept, evaluate 𝑐(𝑡).  To find the t-intercept, solve 𝐶(𝑡) = 0. 

1. (a)   C intercept at (0, 48)

(b)   𝑡 intercepts at (4,0), (-1,0), (6,0)

3. (a)   C intercept at (0,0)

(b)   𝑡 intercepts at (2,0), (-1,0), (0,0)
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5. 𝐶(𝑡) = 2𝑡4 − 8𝑡3 + 6𝑡2 = 2𝑡2(𝑡2 − 4𝑡 + 3) = 2𝑡2(𝑡 − 1)(𝑡 − 3). 

     (a)   C intercept at (0,0) 

     (b)   𝑡 intercepts at (0,0), (3,0) (-1,0) 

7. Zeros:  𝑥 ≈ −1.65, 𝑥 ≈ 3.64, 𝑥 ≈ 5. 

9. (a)   as 𝑡 → ∞, ℎ(𝑡) → ∞.  

    (b)   as 𝑡 → −∞, ℎ(𝑡) → −∞ 

For part a of problem 9, we see that as soon as t becomes greater than 5, the function h(t) =

3(t − 5)3(t − 3)3(t − 2) will increase positively as it approaches infinity, because as soon as t is 

greater than 5, the numbers within each parentheses will always be positive.  In b, notice as t 

approaches -∞, any negative number cubed will stay negative.  If you multiply first three terms: 

[3 ∗ (t − 5)3 ∗ (t − 3)3], as t approaches -∞, it will always create a positive number.  When you 

then multiply that by the final number: (𝑡 − 2), you will be multiplying a negative: (𝑡 − 2), by a 

positive: [3 ∗ (t − 5)3 ∗ (t − 3)3], which will be a negative number. 

11. (a)   as 𝑡 → ∞, 𝑝(𝑡) → −∞ 

      (b)   as 𝑡 → −∞, 𝑝(𝑡) → −∞ 

For part a of this problem as t approaches positive infinity, you will always have two parts of the 

equation 𝑝(𝑡) = −2𝑡(𝑡 − 1)(3 − 𝑡)2, that are positive, once t is greater than 1: [(𝑡 − 1) ∗

(3 − 𝑡)2], when multiplied together they stay positive.  They are then multiplied by a number 

that will always be negative: -2t.  A negative multiplied by a positive is always negative, so p(t) 

approaches -∞.  For part b of this problem, as t approaches negative infinity, you will always 

have two parts of the equation that are always positive:  [−2𝑡 ∗ (3 − 𝑡)2], when multiplied 

together stay positive.  They are then multiplied by a number that will always be negative: (t-1).  

A negative multiplied by a positive is always negative, so p(t) approaches -∞. 

13.  𝑓(𝑥) = (𝑥 + 3)2(𝑥 − 2)    15.      ℎ(𝑥) = (𝑥 − 1)3(𝑥 + 3)2 
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17.       𝑚(𝑥) = −2𝑥(𝑥 − 1)(𝑥 + 3) 

  

19.  (𝑥 − 3)(𝑥 − 2)2 > 0 when 𝑥 > 3    

To solve the inequality (𝑥 − 3)(𝑥 − 2)2 > 0, you first want to solve for 𝑥, when the function 

would be equal to zero.  In this case, once you’ve solved for x, you know that when 𝑓(𝑥) = 0,

𝑥 = 3, and 𝑥 = 2.  You want to test numbers greater than, less than, and in-between these points, 

to see if these intervals are positive or negative.  If an interval is positive it is part of your 

solution, and if it’s negative it’s not part of your solution.  You test the intervals by plugging any 

number greater than 3, less than 2, or in between 2 and 3 into your inequality.  For this problem,  

(𝑥 − 3)(𝑥 − 2)2 > 0  is only positive when 𝑥 is greater than 3.  So your solution is:    (𝑥 −

3)(𝑥 − 2)2 > 0  , when 𝑥 > 3. 

21. (𝑥 − 1)(𝑥 + 2)(𝑥 − 3) < 0 when   -2 < x < 1, and when 𝑥 > 3 
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To solve the inequality(𝑥 − 1)(𝑥 + 2)(𝑥 − 3) < 0 , you first want to solve for 𝑥, when the 

function would be equal to zero.  In this case, once you’ve solved for 𝑥, you know that when 

𝑓(𝑥) = 0, 𝑥 = 1, 𝑥 = −2, and 𝑥 = 3.  You want to test numbers greater than, less than, and in-

between these points, to see if these intervals are positive or negative.  If an interval is positive it 

is part of your solution, and if it’s negative it’s not part of your solution.  You test the intervals 

by plugging any number greater than 3, less than -2, or in between -2 and 1, and in between 1 

and 3 into your inequality.  For this problem, (𝑥 − 1)(𝑥 + 2)(𝑥 − 3) < 0   is positive when 𝑥 is 

greater than 3, and when it’s in between −2 and 1.  So your solution is: (𝑥 − 1)(𝑥 + 2)(𝑥 −

3) < 0 when   −2 < 𝑥 < 1, and when 𝑥 > 3. 

23.     The domain is the values of x for which the expression under the radical is nonnegative: 

 −42 + 19𝑥 − 2𝑥2 ≥ 0 

 −(2𝑥2 − 19𝑥 + 42) ≥ 0 

−(2𝑥 − 7)(𝑥 − 6) ≥ 0 

Recall that this graph is a parabola which opens down, so the nonnegative portion is the interval 

between (and including) the x-intercepts: 
7

2
< 𝑥 < 6. 

25.     The domain is the values of x for which the expression under the radical is nonnegative: 

4 − 5𝑥 − 𝑥2 ≥ 0 

(𝑥 − 4)(𝑥 − 1) ≥ 0 

Recall that this graph is a parabola which opens up, so the nonnegative portions are the intervals 

outside of (and including) the x-intercepts: 𝑥 ≤ 1 and 𝑥 ≥ 4. 

27.     The domain is the values of x for which the expression under the radical is nonnegative, 

and since (𝑥 + 2)2 is always nonnegative, we need only consider where 𝑥 − 3 > 0, so the 

domain is 𝑥 ≥ 3. 

29.     The domain can be any numbers for which the denominator of 𝑝(𝑡) is nonzero, because 

you can’t have a zero in the denominator of a fraction.  So find what values of t make 𝑡2 + 2𝑡 −

8 = 0, and those values are not in the domain of 𝑝(𝑡).  𝑡2 + 2𝑡 − 8 = (𝑡 + 4)(𝑡 − 2), so the 

domain is ℝ where 𝑥 ≠ −4 𝑎𝑛𝑑 𝑥 ≠ 2. 

31.     𝑓(𝑥) = −
2

3
(𝑥 + 2)(𝑥 − 1)(𝑥 − 3) 

For problem 31, you can use the 𝑥 intercepts you’re given to get to the point 𝑓(𝑥) =

𝑎(𝑥 + 2)(𝑥 − 1)(𝑥 − 3), because you know that if you solved for each of the 𝑥 values you 
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would end up with the horizontal intercepts given to you in the problem.  Since your equation is 

of degree three, you don’t need to raise any of your 𝑥 values to a power, because if you foiled 

(𝑥 + 2)(𝑥 − 1)(𝑥 − 3) there will be an 𝑥3, which is degree three.  To solve for 𝑎, (your stretch

factor, in this case −
2

3
 ) , you can plug the point your given, (in this case it’s the 𝑦 intercept

(0, −4)) into your equation: −4 = (0 + 2)(0 − 1)(0 − 3), to solve for 𝑎. 

33. 𝑓(𝑥) =
1

3
(𝑥 − 3)2(𝑥 − 1)2(𝑥 + 3)

For problem 33, you can use the 𝑥 intercepts you’re given to get to the point 𝑓(𝑥) =

𝑎(𝑥 − 3)2(𝑥 − 1)2(𝑥 + 3), because you know that if you solved for each of the x values you

would end up with the horizontal intercepts given to you in the problem.  The problem tells you 

at what intercepts has what roots of multiplicity to give a degree of 5, which is why (𝑥 −

2) and (𝑥 − 1)  are squared.  To solve for 𝑎, (your stretch factor, in this case, 
1

3
 ), you can plug 

the point your given, (in this case it’s the 𝑦 intercept (0,9)) into your equation: 9 = (0 − 3)2(0 −

1)2(0 + 3), to solve for 𝑎.

35. 𝑓(𝑥) = −15(𝑥 − 1)2(𝑥 − 3)3

For problem 35, you can use the 𝑥 intercepts you’re given to get to the point 𝑓(𝑥) =

𝑎(𝑥 − 1)2(𝑥 − 3)3, because you know that if you solved for each of the 𝑥 values you would end

up with the horizontal intercepts given to you in the problem.  The problem tells you at what 

intercepts has what roots of multiplicity to give a degree of 5, which is why (𝑥 − 1)  is squared, 

and (𝑥 − 3) is cubed.  To solve for 𝑎, (your stretch factor, in this case, −15), you can plug the 

point your given, (in this case it’s (2,15)) into your equation: 15 = (2 − 1)2(2 − 3)3, to solve

for 𝑎. 

37. The x-intercepts of the graph are (-2, 0), (1, 0), and (3, 0).  Then 𝑓(𝑥) must include the

factors (𝑥 + 2), (𝑥 − 1), and (𝑥 − 3) to ensure that these points are on the graph of 𝑓(𝑥), and 

there cannot be any other factors since the graph has no other x-intercepts.  The graph passes 

through these three x-intercepts without any flattening behavior, so they are single zeros.  Filling 

in what we know so far about the function: 𝑓(𝑥) = 𝑎(𝑥 + 2)(𝑥 − 1)(𝑥 − 3).  To find the value 

of a, we can use the y-intercept, (0, 3): 

3 = 𝑎(0 + 2)(0 − 1)(0 − 3) 

3 = 6𝑎 
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𝑎 =
1

2

Then we conclude that  𝑓(𝑥) =
1

2
(𝑥 + 2)(𝑥 − 1)(𝑥 − 3). 

39. 𝑓(𝑥) = −(𝑥 + 1)2(𝑥 − 2)

41. 𝑓(𝑥) = −
1

24
(𝑥 + 3)(𝑥 + 2)(𝑥 − 2)(𝑥 − 4) 

43. 𝑓(𝑥) =
1

24
(𝑥 + 4)(𝑥 + 2)(𝑥 − 3)2

45. 𝑓(𝑥) =
3

32
(𝑥 + 2)2(𝑥 − 3)2

47. 𝑓(𝑥) =
1

6
(𝑥 + 3)(𝑥 + 2)(𝑥 − 1)3

49. 𝑓(𝑥) = −
1

16
(𝑥 + 3)(𝑥 + 1)(𝑥 − 2)2(𝑥 − 4)

51. See the diagram below. The area of the rectangle is 𝐴 = 2𝑥𝑦, and 𝑦 = 5 − 𝑥2, so 𝐴 =

2𝑥(5 − 𝑥2) = 10𝑥 − 2𝑥3. Using technology, evaluate the

maximum of 10𝑥 − 2𝑥3. The 𝑦-value will be maximum area,

and the 𝑥-value will be half of base length. Dividing the 𝑦-

value by the 𝑥-value gives us the height of the rectangle.  The 

maximum is at 𝑥 = 1.29, 𝑦 = 8.61. So, Base = 2.58,

Height = 6.67. 

3.4 Solutions to Exercises 

1. 4𝑥2 + 3𝑥 − 1 = (𝑥 − 3)(4𝑥 + 15) + 44

3. 5𝑥4 − 3𝑥3 + 2𝑥2 − 1 = (𝑥2 + 4)(5𝑥2 − 3𝑥 − 18) + (12𝑥 + 71)

5. 9𝑥3 + 5 = (2𝑥 − 3) (
9

2
𝑥2 +

27

4
𝑥 +

81

8
) +

283

8

7. 

(3𝑥2 − 2𝑥 + 1) = (𝑥 − 1)(3𝑥 + 1) + 2 

1 3 -2 1 

↓ 3 1 

3 1 2 

5 

2𝑥 

−𝑥 𝑥 

𝑦 

𝑝𝑟𝑜𝑏𝑙𝑒𝑚 51 
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9. 

(3 − 4𝑥 − 2𝑥2) = (𝑥 + 1)(−2𝑥 − 2) + 5 

11. 

 (𝑥3 + 8) = (𝑥 + 2)(𝑥2 − 2𝑥 + 4) + 0 

13. 

(18𝑥2 − 15𝑥 − 25) = (𝑥 −
5

3
) (18𝑥 + 15) + 0 

15. 

(2𝑥3 + 𝑥2 + 2𝑥 + 1) = (𝑥 +
1

2
) (2𝑥2 + 2) + 0 

17. 

(2𝑥3 − 3𝑥 + 1) = (𝑥 −
1

2
) (2𝑥2 + 𝑥 −

5

2
) −

1

4

19. 

(𝑥4 − 6𝑥2 + 9) = (𝑥 − √3)(𝑥3 + √3 𝑥2 − 3𝑥 − 3√3) + 0 

21. Dividing by 𝑥 − 1 leaves 𝑥2 − 5𝑥 − 6 = (𝑥 − 2)(𝑥 − 3).

 𝑥3 − 6𝑥2 + 11𝑥 − 6 = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3) 

23. Dividing by 𝑥 −
2

3
leaves 3𝑥2 + 6𝑥 + 3 = 3(𝑥2 + 2𝑥 + 1) = 3(𝑥 + 1)2

3𝑥3 + 4𝑥2 − 𝑥 − 2 = 3 (𝑥 −
2

3
) (𝑥 + 1)2

-1 -2 -4 3 

↓ 2 2 

-2 -2 5 

-2 1 0 0 8 

↓ -2 4 -8 

1 -2 4 0 

5/3 18 -15 -25 

↓ 30 25 

18 15 0 

-1/2 2 1 2 1 

↓ -1 0 -1 

2 0 2 0 

1/2 2 0 -3 1 

↓ 1 1/2 -5/4 

2 1 -5/2 -1/4 

√3 1 0 -6 0 9 

↓ √3 3 −3√3 -9 

1 √3 -3 −3√3 0 
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25. Dividing by 𝑥 + 2 leaves 𝑥2 − 3 = (𝑥 + √3)(𝑥 − √3)

 𝑥3 + 2𝑥2 − 3𝑥 − 6 = (𝑥 + 2)(𝑥 + √3)(𝑥 − √3) 

27. Dividing by 𝑥 −
1

2
twice leaves 4𝑥2 − 24𝑥 + 36 = 4(𝑥2 − 6𝑥 + 9) = 4(𝑥 − 3)2.

4𝑥4 − 28𝑥3 + 61𝑥2 − 42𝑥 + 9 = 4 (𝑥 −
1

2
)

2

(𝑥 − 3)2
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4.1 Solutions to Exercises 

1.  Linear, because the average rate of change between any pair of points is constant. 

 

3.  Exponential, because the difference of consecutive inputs is constant and the ratio of 

consecutive outputs is constant. 

 

5. Neither, because the average rate of change is not constant nor is the difference of consecutive 

inputs constant while the ratio of consecutive outputs is constant. 

 

7.  𝑓(𝑥) = 11,000(1.085)𝑥  You want to use your exponential formula f(x)= 𝑎𝑏𝑥 You know the 

initial value a is 11,000.  Since 𝑏, your growth factor, is 𝑏 = 1 ± 𝑟, where 𝑟 is the percent 

(written as a decimal) of growth/decay, 𝑏 = 1.085. This gives you every component of your 

exponential function to plug in. 

 

9.  𝑓(𝑥) = 23,900(1.09)𝑥  𝑓(8) = 47,622.  You know the fox population is 23,900, in 2010, so 

that’s your initial value.  Since 𝑏, your growth factor is 𝑏 = 1 ± 𝑟, where 𝑟 is the percent 

(written as a decimal) of growth/decay, 𝑏 = 1.09.  This gives you every component of your 

exponential function and produces the function𝑓(𝑥) = 23,900(1.09)𝑥.  You’re trying to 

evaluate the fox population in 2018, which is 8 years after 2010, the time of your initial value.  

So if you evaluate your function when 𝑥 = 8, because 2018 − 2010 = 8, you can estimate the 

population in 2018. 

 

11.  𝑓(𝑥) = 32,500(. 95)𝑥      𝑓(12) = $17,561.70.  You know the value of the car when 

purchased is 32,500, so that’s your initial value.  Since your growth factor is 𝑏 = 1 ± 𝑟, where 𝑟 

is the percent (written as a decimal) of growth/decay, 𝑏 = .95  This gives you every component 

of your exponential function produces the function 𝑓(𝑥) = 32,500(. 95)𝑥 .  You’re trying to 

evaluate the value of the car 12 years after it’s purchased.  So if you evaluate your function when 

𝑥 = 12, you can estimate the value of the car after 12 years. 
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13.  We want a function in the form 𝑓(𝑥) = 𝑎𝑏𝑥.  Note that 𝑓(0) = 𝑎𝑏0 = 𝑎; since (0, 6) is a 

given point, 𝑓(0) = 6, so we conclude 𝑎 = 6.  We can plug the other point (3, 750), into 𝑓(𝑥) =

6𝑏𝑥 to solve for b: 750 = 6(𝑏)3.  Solving gives 𝑏 = 5, so 𝑓(𝑥) = 6(5)𝑥.  

 

15.  We want a function in the form 𝑓(𝑥) = 𝑎𝑏𝑥.  Note that 𝑓(0) = 𝑎𝑏0 = 𝑎; since (0, 2000) is 

a given point, 𝑓(0) = 2000, so we conclude 𝑎 = 2000.  We can plug the other point (2, 20) into 

𝑓(𝑥) = 2000𝑏𝑥, giving 20 = 2000(𝑏)2.  Solving for b, we get 𝑏 = 0.1, so 𝑓(𝑥) = 2000(. 1)𝑥. 

 

17.  𝑓(𝑥) = 3(2)𝑥  For this problem, you are not given an initial value, so using the coordinate 

points your given, (−1,
3

2
) , (3, 24) you can solve for 𝑏 and then 𝑎.  You know for the first 

coordinate point, (
3

2
) = 𝑎(𝑏)−1  .  You can now solve for a in terms of 𝑏:  (

3

2
) =

𝑎

𝑏
 → (

3𝑏

2
) = 𝑎  .  

Once you know this, you can substitute (
3𝑏

2
) = 𝑎  , into your general equation, with your other 

coordinate point, to solve for b: 24 = (
3𝑏

2
) (𝑏)3   → 48 = 3𝑏4  → 16 = 𝑏4   →  𝑏 = 2.  So you 

have now solved for 𝑏.  Once you have done that you can solve for a, by using what you 

calculated for 𝑏, and one of the coordinate points your given:  24 = 𝑎(2)3   → 24 = 8𝑎 →  𝑎 =

3.  So now that you’ve solved for a and b, you can come up with your general equation: 𝑓(𝑥) =

3(2)𝑥. 

 

19.  𝑓(𝑥) = 2.93(. 699)𝑥   For this problem, you are not given an initial value, so using the 

coordinate points you’re given, (−2,6), (3, 1) you can solve for 𝑏 and then 𝑎.  You know for the 

first coordinate point, 1 = 𝑎(𝑏)3  .  You can now solve for a in terms of 𝑏:  
1

𝑏3
= 𝑎 .  Once you 

know this, you can substitute
1

𝑏3 = 𝑎  , into your general equation, with your other coordinate 

point, to solve for 𝑏: 6 =
1

𝑏3
(𝑏)−2   →  6𝑏5 = 1  →  𝑏5 =

1

6
  →   𝑏 = .699.  So you have now 

solved for 𝑏.  Once you have done that you can solve for 𝑎, by using what you calculated for 𝑏, 

and one of the coordinate points you’re given:  6 = 𝑎(. 699)−2   →  6=2.047𝑎 →   𝑎 = 2.93.  So 

now that you’ve solved for 𝑎 and 𝑏, you can come up with your general equation: 𝑓(𝑥) =

2.93(. 699)𝑥 
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21.  𝑓(𝑥) =
1

8
(2)𝑥  For this problem, you are not given an initial value, so using the coordinate 

points you’re given, (3,1), (5, 4) you can solve for 𝑏 and then 𝑎.  You know for the first 

coordinate point, 1 = 𝑎(𝑏)3  .  You can now solve for a in terms of 𝑏:  1/𝑏3 = 𝑎 .  Once you 

know this, you can substitute
1

𝑏3 = 𝑎  , into your general equation, with your other coordinate 

point, to solve for 𝑏: 4 =
1

𝑏3
(𝑏)5   →  4 = 𝑏2   →  𝑏 = 2 .  So you have now solved for 𝑏.  Once 

you have done that you can solve for a, by using what you calculated for 𝑏, and one of the 

coordinate points your given:  1 = 𝑎(2)3   → 1 = 8𝑎 →  𝑎 = 1/8.  So now that you’ve solved 

for 𝑎 and 𝑏, you can come up with your general equation: 𝑓(𝑥) =
1

8
(2)𝑥   

 

23.  33.58 milligrams. To solve this problem, you want to use the exponential growth/decay 

formula , 𝑓(𝑥) = 𝑎(𝑏)𝑥 , to solve for b, your growth factor.  Your starting amount is a, so a=100 

mg.  You are given  a coordinate, (35,50), which you can plug into the formula to solve for b, 

your effective growth rate  giving you your exponential formula  𝑓(𝑥) = 100(0.98031)𝑥 Then 

you can plug in your 𝑥 = 54,  to solve for your substance. 

 

25.  $1,555,368.09  Annual growth rate: 1.39%  To solve this problem, you want to use the 

exponential growth/decay formula f(x)=𝑎𝑏𝑥 First create an equation using the initial conditions, 

the price of the house in 1985, to solve for a.  You can then use the coordinate point you’re given 

to solve for b.  Once you’ve found a, and b, you can use your equation  

f(x)=110,000(1.0139)𝑥 to predict the value for the given year. 

 

27.  $4,813.55  To solve this problem, you want to use the exponential growth/decay formula 

f(x)=𝑎𝑏𝑥 First create an equation using the initial conditions, the value of the car in 2003, to 

solve for a.  You can then use the coordinate point you’re given to solve for b.  Once you’ve 

found a, and b, you can use your equation f(x)=38,000(.81333)𝑥 to predict the value for the 

given year. 

 

29.  Annually:  $7353.84  Quarterly:  $47469.63  Monthly: $7496.71 Continuously: $7,501.44.  

Using the compound interest formula A(t)=𝑎(1 +
𝑟

𝐾
)𝐾𝑡 you can plug in your starting amount, 
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$4000 to solve for each of the three conditions, annually—𝑘 = 1, quarterly—𝑘 = 4, and 

monthly—𝑘 = 12.  You then need to plug your starting amount, $4000 into the continuous 

growth equation f(x)=𝑎𝑒𝑟𝑥 to solve for continuous compounding. 

 

31.  APY= .03034 ≈ 3.03% You want to use the APY formula 𝑓(𝑥) = (1 +
𝑟

𝐾
)𝐾-1 you are given 

a rate of 3% to find your r and since you are compounding quarterly K=4 

 

33.  𝑡 = 7.4 years To find out when the population of bacteria will exceed 7569 you can plug 

that number into the given equation as P(t) and solve for t. To solve for t, first isolate the 

exponential expression by dividing both sides of the equation by 1600, then take the ln of both 

sides of the equation, utilizing the exponent property for logs to pull the variable out of the 

exponent, then use algebra to solve for t. 

 

35.  (a)    𝑤(𝑡) = 1.1130(1.0464)𝑡    For this problem, you are not given an initial value, since 

1960 corresponds to 0, 1968 would correspond to 8 and so on, giving  you the 

points (8,1.60) (16,2.30) you can use these points to solve for 𝑏 and then 𝑎.  You know for the 

first coordinate point, 1.60 = 𝑎𝑏8  .  You can now solve for a in terms of 𝑏:  
1.60

𝑏8 = 𝑎 .  Once you 

know this, you can substitute 
1.60

𝑏8 = 𝑎  , into your general equation, with your other coordinate 

point, to solve for b: 2.30 =
1.60

𝑏8
(𝑏)16   →  1.60𝑏8 = 2.30  →  𝑏8 =

2.30

1.60
  →   𝑏 = 1.0464.  So 

you have now solved for b.  Once you have done that you can solve for 𝑎, by using what you 

calculated for 𝑏, and one of the coordinate points you’re given:  2.30 = 𝑎(1.0464)16   →

 2.30 = 2.0664𝑎 →  𝑎 = 1.1130.  So now that you’ve solved for 𝑎 and 𝑏, you can come up 

with your general equation: 𝑤(𝑡) = 1.1130(1.0464)𝑡  

      (b)    $1.11  using the equation you found in part a you can find w(0) 

      (c)  The actual minimum wage is less than the model predicted, using the equation you found 

in part a you can find w(36) which would correspond to the year 1996 

 

37.  (a)    512 dimes  the first square would have 1 dime which is 20 the second would have 2 

dimes which is 21 and so on, so the tenth  square would have 29 or 512 dimes 
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      (b)   2𝑛−1 if n is the number of the square you are on the first square would have 1 dime 

which is 21−1 the second would have 2 dimes which is 22−1 the fifteenth square would have 

16384 dimes which is 215−1 

      (c)    263,   264−1 

      (d)    9,223,372,036,854,775,808 mm   

      (e)  There are 1 million millimeters in a kilometer, so the stack of dimes is about 

9,223,372,036,855 km high, or about 9,223,372 million km.  This is approximately 61,489 times 

greater than the distance of the earth to the sun. 

 

4.2 Solutions to Exercises 

1.  b        3.  a        5. e 

7.  The value of b affects the steepness of the slope, and graph D has the highest positive slope it 

has the largest value for b. 

 

9.  The value of a is your initial value, when your 𝑥 = 0.  Graph C has the largest value for a. 

 

11.   The function changes 𝑥 to – 𝑥, which  13.     The function will shift the function  

 will reflect the graph across the y-axis.  three units up. 
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15.  The function will shift the function two  units to the right.  

   

17. 𝑓(𝑥) = 4𝑥 + 4   19. 𝑓(𝑥) = 4(𝑥+2)  21. 𝑓(𝑥) = −4𝑥 

23. as  𝑥 → ∞, 𝑓(𝑥) → −∞. When 𝑥 is approaching +∞, 𝑓(𝑥) becomes negative because 4𝑥 

is multiplied by a negative number. 

as  𝑥 →  −∞, 𝑓(𝑥) = −1. As 𝑥 approaches−∞, 𝑓(𝑥) approaches 1, because −5(4−𝑥) will 

approach 0, which means 𝑓(𝑥) approaches -1 as it’s shifted down one. 

25. as  𝑥 →  ∞, 𝑓(𝑥) → −2 As 𝑥 approaches +∞, 𝑓(𝑥) approaches -2, because 3 (
1

2
)

𝑥

will 

approach 0, which means 𝑓(𝑥) approaches -2 as it’s shifted down 2. 

 as  𝑥 →  −∞, 𝑓(𝑥) → +∞ because (
1

2
)

−𝑥

= (2)𝑥  so 𝑓(𝑥) → ∞.  

27. as  𝑥 →  ∞, 𝑓(𝑥) → 2 As 𝑥 approaches +∞, 𝑓(𝑥) approaches 2, because 3(4)−𝑥 will 

approach 0, which means 𝑓(𝑥) approaches 2 as it’s shifted up 2. 

 as  𝑥 →  −∞, 𝑓(𝑥) → ∞ because (4)−𝑥 = (
1

4
)

𝑥

  so 𝑓(𝑥) → ∞. 

29.     𝑓(𝑥) = −2𝑥+2 + 1 flipped about the x-axis, horizontal shift 2 units to the left, vertical 

shift 1 unit up 

31. 𝑓(𝑥) = −2−𝑥 + 2 flipped about the x-axis, flipped about the y-axis, vertical shift 2 units up 

33. 𝑓(𝑥) = −2(3)𝑥 + 7  The form of an exponential function is 𝑦 = 𝑎𝑏𝑥 + 𝑐. This equation 

has a horizontal asymptote at 𝑥 = 7 so we know 𝑐 = 7, you can also now solve for 𝑎 and 𝑏 

by choosing two other points on the graph, in this case (0,5) an (1,1), you can then plug 

(0,5) into your general equation and solve for 𝑎 algebraically, and then use your second 

point to solve for 𝑏. 
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35. 𝑓(𝑥) = 2 (
1

2
)

𝑥

− 4 The form of an exponential function is 𝑦 = 𝑎𝑏𝑥 + 𝑐. This equation has 

a horizontal asymptote at 𝑥 = −4 so we know 𝑐 = −4, you can also now solve for 𝑎 and 𝑏 

by choosing two other points on the graph, in this case (0,-2) an (-1,0), you can then plug  

 (0,-2) into your general equation and solve for 𝑎 algebraically, and then use your second 

point to solve for 𝑏. 

 

4.3 Solutions to Exercises 

1.  4𝑚 = 𝑞 use the inverse property of logs log𝑏 𝑐=a is equivalent to 𝑏𝑎=c 

3.  𝑎𝑐 = 𝑏 use the inverse property of logs log𝑏 𝑐=a is equivalent to 𝑏𝑎=c 

5.  10𝑡 = 𝑣 use the inverse property of logs log𝑏 𝑐=a is equivalent to 𝑏𝑎=c 

7.  𝑒𝑛 = 𝑤 use the inverse property of logs log𝑏 𝑐=a is equivalent to 𝑏𝑎=c 

9.  log4 𝑦 = 𝑥 use the inverse property of logs  𝑏𝑎=c is equivalent to log𝑏 𝑐=a 

11.  log𝑐 𝑘 = 𝑑 use the inverse property of logs  𝑏𝑎=c is equivalent to log𝑏 𝑐=a 

13.  log 𝑏 = 𝑎 use the inverse property of logs  𝑏𝑎=c is equivalent to log𝑏 𝑐=a 

15.  ln ℎ = 𝑘 use the inverse property of logs  𝑏𝑎=c is equivalent to log𝑏 𝑐=a 

17.  𝑥 = 9 solve using the inverse properties of logs to rewrite the logarithmic expression as the 

exponential expression 32 = 𝑥 then solve for x 

19.  𝑥 =
1

8
 solve using the inverse properties of logs to rewrite the logarithmic expression as  the 

exponential expression 2−3 = 𝑥 then solve for x 

21.  𝑥 = 1000 solve using the inverse properties of logs to rewrite the logarithmic expression as 

the  exponential expression 103 = 𝑥 then solve for x 
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23.  𝑥 = 𝑒2 solve using the inverse properties of logs to rewrite the logarithmic expression as the 

exponential expression 𝑒2 = 𝑥 

25.  2 solve using the inverse properties of logs to rewrite the logarithmic expression as the 

exponential expression 5𝑥 = 25 then solve for x 

27.  −3 solve using the inverse properties of logs to rewrite the logarithmic expression as the 

exponential expression 3𝑥 =
1

27
 then solve for x 

29.  
1

2
 solve using the inverse properties of logs to rewrite the logarithmic expression as the 

exponential expression 6𝑥 = √6 then solve for x 

31.  4 solve using the inverse properties of logs to rewrite the logarithmic expression as the 

exponential expression 10𝑥 = 10,000 then solve for x 

33.  −3 solve using the inverse properties of logs to rewrite the logarithmic expression as the 

exponential expression 10𝑥 = 0.001 then solve for x 

35.  −2 solve using the inverse properties of logs to rewrite the logarithmic expression as the 

exponential expression 𝑒𝑥 = 𝑒−2 then solve for x 

37.  𝑥 = −1.398 use calculator 

39.  𝑥 = 2.708 use calculator 

41.  𝑥 ≈ 1.639 Take the log or ln of both sides of the equation, utilizing the exponent property 

for logs to pull the variable out of the exponent, then use algebra to solve for x. 

43.  𝑥 ≈ −1.392 Take the log or ln of both sides of the equation, utilizing the exponent property 

for logs to pull the variable out of the exponent, then use algebra to solve for x. 

45.  𝑥 ≈ 0.567 Take the log or ln of both sides of the equation, utilizing the exponent property 

for logs to pull the variable out of the exponent, then use algebra to solve for x. 
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47.  𝑥 ≈ 2.078  Take the log or ln of both sides of the equation, utilizing the exponent property 

for logs to pull the variable out of the exponent, then use algebra to solve for x. 

49.  𝑥 ≈ 54.449  First isolate the exponential expression by dividing both sides of the equation 

by 1000 to get it into  𝑏𝑎=c form, then take the log or ln of both sides of the equation, utilizing 

the exponent property for logs to pull the variable out of the exponent, then use algebra to solve 

for x.  

51.  𝑥 ≈ 8.314  First isolate the exponential expression by dividing both sides of the equation by 

3  to get it into  𝑏𝑎=c form, then take the log or ln of both sides of the equation, utilizing the 

exponent property for logs to pull the variable out of the exponent, then use algebra to solve for 

x.  

53.  𝑥 ≈ 13.412  First isolate the exponential expression by dividing both sides of the equation 

by 50 to get it into  𝑏𝑎=c form, then take the log or ln of both sides of the equation, utilizing the 

exponent property for logs to pull the variable out of the exponent, then use algebra to solve for 

x.  

55.  𝑥 ≈ .678  First isolate the exponential expression by subtracting 10 from both sides of the 

equation and then dividing both sides by -8  to get it into  𝑏𝑎=c form, then take the log or ln of 

both sides of the equation, utilizing the exponent property for logs to pull the variable out of the 

exponent, then use algebra to solve for x.  

57.  𝑓(𝑡) = 300𝑒−.094𝑡  You want to change from the form𝑓(𝑡) = 𝑎(1 + 𝑟)𝑡 𝑡𝑜 𝑓(𝑡) = 𝑎𝑒𝑘𝑡.  

From your initial conditions, you can solve for 𝑘 by recognizing that, by using algebra, (1 +

𝑟) = 𝑒𝑘 . In this case 𝑒𝑘 = 0.91 Then take the log or ln of both sides of the equation, utilizing 

the exponent property for logs to pull the variable out of the exponent, and then use algebra to 

solve for k. You then have all the pieces to plug into your continuous growth equation.  

59.  𝑓(𝑡) = 10𝑒 .0392𝑡  You want to change from the form 𝑓(𝑡) = 𝑎(1 + 𝑟)𝑡 𝑡𝑜 𝑓(𝑡) = 𝑎𝑒𝑘𝑡.  

From your initial conditions, you can solve for 𝑘 by recognizing that, by using algebra, (1 +

𝑟) = 𝑒𝑘 . In this case 𝑒𝑘 = 1.04 Then take the log or ln of both sides of the equation, utilizing 
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the exponent property for logs to pull the variable out of the exponent, and then use algebra to 

solve for x. You then have all the pieces to plug into your continuous growth equation. 

61.  𝑓(𝑡) = 150(1.062)𝑡  You want to change from the form 𝑓(𝑡) = 𝑎𝑒𝑘𝑡𝑡𝑜 𝑓(𝑡) = 𝑎(1 + 𝑟)𝑡.  

You can recognize that, by using algebra, (1 + 𝑟) = 𝑒𝑘.  You can then solve for 𝑏, because you 

are given 𝑘, and you know that 𝑏 = (1 + 𝑟).    Once you’ve calculated 𝑏 = 1.06184, you have 

solved for all your variables, and can now put your equation into annual growth form. 

63.  𝑓(𝑡) = 50(. 988)𝑡  You want to change from the form 𝑓(𝑡) = 𝑎𝑒𝑘𝑡𝑡𝑜 𝑓(𝑡) = 𝑎(1 + 𝑟)𝑡. 

You can recognize that, by using algebra, (1 + 𝑟) = 𝑒𝑘.  You can then solve for 𝑏, because you 

are given 𝑘, and you know that 𝑏 = (1 + 𝑟).    Once you’ve calculated 𝑏 = .988072, you have 

solved for all your variables, and can now put your equation into annual growth form. 

65.  4.78404  years You want to use your exponential growth formula 𝑦 = 𝑎𝑏𝑡 and solve for t, 

time. You are given your initial value a= 39.8 million and we know that  𝑏 = (1 + 𝑟) you can 

solve for b using your rate, r=2.6% so b=1.026. You want to solve for t when f(t)=45 million so 

your formula is 45=39.8(1.026)𝑡. To solve for t, first isolate the exponential expression by 

dividing both sides of the equation by 39.8, then take the log or ln of both sides of the equation, 

utilizing the exponent property for logs to pull the variable out of the exponent, then use algebra 

to solve for t.  

67.  74.2313 years You want to use your exponential growth formula 𝑦 = 𝑎𝑏𝑡 and first solve for 

b. You are given your initial value a=563,374 and you know that after 10 years the population 

grew to 608, 660 so you can write your equation 608,660=563,374(𝑏)10 and solve for b getting 

1.00776. Now you want to find t when f(t)=1,000,000 so you can set up the equation 

1,000,000=563,364(1.00776)𝑡. To solve for t, first isolate the exponential expression by 

dividing both sides of the equation by 563,364, then take the log or ln of both sides of the 

equation, utilizing the exponent property for logs to pull the variable out of the exponent, then 

use algebra to solve for t. 

69.  34.0074  hrs You want to use your exponential decay formula 𝑦 = 𝑎𝑏𝑡 and first solve for b. 

You are given your initial value a=100mg and you know that after 4 hours the substance decayed 
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to 80mg so you can write your equation 80=100(𝑏)4 and solve for b getting .945742. Now you 

want to find t when f(t)=15 so you can set up the equation 15=100(.945742)𝑡. To solve for t, 

first isolate the exponential expression by dividing both sides of the equation by 100, then take 

the log or ln of both sides of the equation, utilizing the exponent property for logs to pull the 

variable out of the exponent, then use algebra to solve for t.  

71.  13.5324 months You want to use your compound interest formula A(t)= 𝑎(1 +
𝑟

𝑘
)𝑘𝑡 to solve 

for t when f(t)=1500. You are given your initial value a=1000, a rate of r=.03, and it compounds 

monthly so k=12. You can then write your equation as 1500=1000(1 +
.03

12
)12𝑡 and solve for t. 

To solve for t, first isolate the exponential expression by dividing both sides of the equation by 

1000, then take the log or ln of both sides of the equation, utilizing the exponent property for 

logs to pull the variable out of the exponent, then use algebra to solve for t.  

 

4.4  Solutions to Exercises 

1.  log3 4 simplify using difference of logs property 

3.  log3 7 the -1 can be pulled inside the log by the exponential property to raise 
1

7
 to the − 1 

5.  log3 5 simplify using sum of logs property 

7.  log7 2 the 
1

3
 can be pulled inside the log by the exponential property to raise 8 to the 

1

3
 

9.  log(6𝑥9) simplify using sum of logs property 

11.  ln (2𝑥7) simplify using difference of logs property 

13.  log(𝑥2(𝑥 + 1)3) 𝑥 can be raised to the 2nd power, and (𝑥 + 1) can be raised to the 3rd power 

via the exponential property, these two arguments can be multiplied in a single log via the sum of 

logs property 
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15.  log (
𝑥𝑧3

√𝑦
)  y can be raised to the -

1

2
 power, and z to the 3rd power via the exponential 

property, then these three arguments can be multiplied in a single log via the sum of logs 

property 

17.  15 log(𝑥) + 13 log(𝑦) − 19 log(𝑧) expand the logarithm by adding log(𝑥15) and 

log(𝑦13) (sum property) and subtracting log(𝑧19) (difference property) then pull the exponent of 

each logarithm in front of the logs (exponential property) 

19.  4 ln(𝑏) − 2 ln(𝑎) − 5 ln(𝑐) expand the logarithm by adding ln(𝑏−4) and ln(𝑐5) (sum 

property) and subtracting that from ln(𝑎−2) (difference property) then pull the exponent of each 

logarithm in front of the logs (exponential property) 

21.  
3

2
log(𝑥) − 2 log(𝑦) expand the logarithm by adding log (𝑥

3

2) and log (𝑦
−4

2 ) (sum property) 

then pull the exponent of each logarithm in front of the logs (exponential property) 

23.  ln(𝑦) + (
1

2
ln(𝑦) −

1

2
ln(1 − 𝑦)) expand the logarithm by subtracting ln (𝑦

1

2) and ln ((1 −

𝑦)
1

2) (difference property) and adding ln(𝑦)(sum property) then pull the exponent of each 

logarithm in front of the logs (exponential property) 

25.  2log(𝑥)+3log(𝑦)+
2

3
log(𝑥)+

5

3
log(𝑦) expand the logarithm by adding log(𝑥2) , log(𝑦3) , 

log (𝑥
2

3) and log (𝑦
5

3) then pull the exponent of each logarithm  in from of the logs (exponential 

property) 

27.  𝑥 ≈  −.7167Take the log or ln of both sides of the equation, utilizing the exponent property 

for logs to pull the variable out of the exponent, remembering to keep parenthesis on (4x-7) and 

(9x-6), and then use algebra to solve for x. 

29.  𝑥 ≈ −6.395 divide both sides by 17 and (1.16)𝑥 using properties of exponents, then take 

the log or ln of both sides of the equation, utilizing the exponent property for logs to pull the 

variable out of the exponent and then use algebra to solve for x 
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31.  𝑡 ≈ 17.329 divide both sides by 10 and 𝑒(.12𝑡) using properties of exponents, then ln both 

sides of the equation, utilizing the exponent property for logs to pull the variable out of the 

exponent, remembering that ln(e)=1, and then use algebra to solve for t 

33.  𝑥 =
2

7
 rewrite as an exponential expression using the inverse property of logs and a base of 2 

and then use algebra to solve for x 

35.  𝑥 =
1

3𝑒
≈ 0.1226 subtract 3 from both sides of the equation and then divide both sides by 2, 

then rewrite as an exponential expression using the inverse property of logs and a base of e and 

then use algebra to solve for x 

37.  𝑥 = √100
3

≈ 4.642 rewrite as an exponential expression using the inverse property of logs 

and a base of 10 and then use algebra to solve for x 

39.  𝑥 ≈ 30.158 combine the expression into a single logarithmic expression using the sum of 

logs property, then rewrite as an exponential expression using the inverse property of logs and a 

base of 10 and then use algebra to solve for x 

41.  𝑥 = −
26

9
 ≈ −2.8889 combine the expression into a single logarithmic expression using the 

difference of logs property, then rewrite as an exponential expression using the inverse property 

of logs and a base of 10 and then use algebra to solve for x 

43.  𝑥 ≈ −.872983 combine the expression into a single logarithmic expression using the 

difference of logs property, then rewrite as an exponential expression using the inverse property 

of logs and a base of 6 and then use algebra to solve for x 

45.  𝑥 =
12

11
 combine the expression into a single logarithmic expression using the difference of 

logs property and the sum of logs property, then rewrite as an exponential expression using the 

inverse property of logs and a base of 10 and then use algebra to solve for x 
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47. 𝑥 = 10 combine the expression into a single logarithmic expression using the difference of

logs property and the sum of logs property, then rewrite as an exponential expression using the 

inverse property of logs and a base of 10 and then use algebra to solve for x 
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Combining Horizontal 
Transformations, 79 

Combining Vertical Transformations, 
79 

Horizontal Reflections, 71 
Horizontal Shifts, 67 
Horizontal Stretch or Compression, 77 
Vertical Reflections, 71 
Vertical Shifts, 65 
Vertical Stretch or Compression, 75 

transverse axis, 598 
Trigonometric Identities, 376 

Alternative Forms of the Pythagorean 
Identity, 379, 454, 456 

Cofunction Identities, 387 
Double Angle Identities, 477 
Half-Angle Identities, 483 
Negative Angle Identities, 454 
Power Reduction Identities, 483 
Product to Sum Identities, 468 
Pythagorean Identity, 364 
Reciprocal Identities, 454 
Sum and Difference Identities, 461 
Sum to Product Identities, 469 

Trigonometry 
Cosecant, 375 
Cosine, 363, 385, 398 
Cotangent, 375 
Right Triangles, 385, 597 
Secant, 375 
Sine, 363, 385, 398 
SohCahToa, 385 
Solving Trig Equations, 437 
Tangent, 375, 385 
The Pythagorean Theorem, 337 
Unit Circle, 369 

Triple Zero, 183 
Unit Circle, 369 
Vector, 541, 544 

Adding Vectors Geometrically, 542 
Adding, Subtracting, or Scaling 

Vectors in Component Form, 547 
Geometrically Scaling a Vector, 543 

Vertex, 167, 169 
Vertex Form, 169 
Vertical Asymptote, 219, 222 
Vertical Intercept, 115 
Vertical Line Test, 7 
Vertical Lines, 119 
Vertices, 580, 598, 617 
Work, 560 
zeros, 164 
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